Suppr超能文献

多孔介质中干试剂的控制释放,可在再水合时实现可调的时间和空间分布。

Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Lab Chip. 2012 Nov 7;12(21):4321-7. doi: 10.1039/c2lc40785j.

Abstract

Novel methods are demonstrated that enable controlled spatial and temporal rehydration of dried reagents in a porous matrix. These methods can be used in paper-based microfluidic assays to define reagent concentrations over time at zones downstream for improved performance, and can reduce costs by simplifying the manufacturing process with the use of a single porous substrate. First, the creation of uniform reagent pulses from patterned arrays of dried reagent is demonstrated. Second, reagents are stored dry in separate regions of the porous matrix so that they can be combined upon rehydration for immediate use in the device. Third, reagents are reconstituted sequentially from dry storage depots with tunable delivery times. Fourth, the total time for dissolution is varied to achieve a range of reagent delivery times to a downstream region. Finally, the utility of these control methods is demonstrated in the context of real-time reagent rehydration and mixing on a porous device.

摘要

展示了一些新方法,使多孔基质中干燥试剂的可控空间和时间再水合成为可能。这些方法可用于基于纸张的微流控分析中,以在下游区域随时间定义试剂浓度,从而改善性能,并且通过使用单个多孔基质简化制造过程来降低成本。首先,展示了从干燥试剂的图案化阵列中产生均匀试剂脉冲的方法。其次,将试剂干燥储存在多孔基质的不同区域中,以便在再水合时可以将它们组合在一起,以便立即在设备中使用。第三,从干燥储存库中顺序重新配制试剂,具有可调的输送时间。第四,改变溶解的总时间,以实现向下游区域的一系列试剂输送时间。最后,在多孔装置上实时试剂再水合和混合的背景下证明了这些控制方法的实用性。

相似文献

2
Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network.
Anal Chem. 2014 Jul 1;86(13):6447-53. doi: 10.1021/ac500872j. Epub 2014 Jun 17.
3
Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage.
Lab Chip. 2008 Dec;8(12):2038-45. doi: 10.1039/b811158h. Epub 2008 Oct 16.
4
Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring.
Anal Methods. 2021 Feb 7;13(5):660-671. doi: 10.1039/d0ay02043e. Epub 2021 Jan 19.
5
Tunable-delay shunts for paper microfluidic devices.
Anal Chem. 2013 Dec 3;85(23):11545-52. doi: 10.1021/ac4030939. Epub 2013 Nov 18.
6
7
Controlled release of reagents in capillary-driven microfluidics using reagent integrators.
Lab Chip. 2011 Aug 21;11(16):2680-5. doi: 10.1039/c1lc20282k. Epub 2011 Jun 15.
8
Paper Stacks for Uniform Rehydration of Dried Reagents in Paper Microfluidic Devices.
Sci Rep. 2019 Oct 31;9(1):15755. doi: 10.1038/s41598-019-52202-9.
9
synthesis of reagents in paper-based analytical devices using paper stacking.
Anal Methods. 2022 Oct 20;14(40):4021-4024. doi: 10.1039/d2ay00924b.
10
Controlled reagent transport in disposable 2D paper networks.
Lab Chip. 2010 Apr 7;10(7):918-20. doi: 10.1039/b919614e. Epub 2010 Jan 15.

引用本文的文献

1
Challenges in the development of microfluidic paper-based analytical devices (μPADs).
Mikrochim Acta. 2025 Jun 24;192(7):451. doi: 10.1007/s00604-025-07270-2.
2
Development of molecularly imprinted polymers for the detection of human chorionic gonadotropin.
Sci Rep. 2025 Mar 26;15(1):10436. doi: 10.1038/s41598-025-94289-3.
3
Accelerated Development of a COVID-19 Lateral Flow Test in an Academic Setting: Lessons Learned.
Acc Chem Res. 2024 May 7;57(9):1372-1383. doi: 10.1021/acs.accounts.4c00075. Epub 2024 Apr 8.
5
Advanced trap lateral flow immunoassay sensor for the detection of cortisol in human bodily fluids.
Sci Rep. 2021 Nov 19;11(1):22580. doi: 10.1038/s41598-021-02084-7.
7
Reagent integration and controlled release for multiplexed nucleic acid testing in disposable thermoplastic 2D microwell arrays.
Biomicrofluidics. 2021 Jan 15;15(1):014103. doi: 10.1063/5.0039146. eCollection 2021 Jan.
8
Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring.
Anal Methods. 2021 Feb 7;13(5):660-671. doi: 10.1039/d0ay02043e. Epub 2021 Jan 19.
10
Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments.
Mikrochim Acta. 2019 Dec 18;187(1):70. doi: 10.1007/s00604-019-3822-x.

本文引用的文献

2
Transport in two-dimensional paper networks.
Microfluid Nanofluidics. 2011 Jan;10(1):29-35. doi: 10.1007/s10404-010-0643-y.
3
Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper.
Lab Chip. 2011 Dec 21;11(24):4274-8. doi: 10.1039/c1lc20758j. Epub 2011 Oct 28.
4
Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format.
Anal Chem. 2011 Oct 15;83(20):7941-6. doi: 10.1021/ac201950g. Epub 2011 Sep 21.
5
Controlled release of reagents in capillary-driven microfluidics using reagent integrators.
Lab Chip. 2011 Aug 21;11(16):2680-5. doi: 10.1039/c1lc20282k. Epub 2011 Jun 15.
6
Chemical signal amplification in two-dimensional paper networks.
Sens Actuators B Chem. 2010 Aug 6;149(1):325-328. doi: 10.1016/j.snb.2010.06.024.
7
Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks.
Lab Chip. 2010 Oct 21;10(20):2659-65. doi: 10.1039/c004821f. Epub 2010 Aug 3.
8
Visualization and measurement of flow in two-dimensional paper networks.
Lab Chip. 2010 Oct 7;10(19):2614-7. doi: 10.1039/c004766j. Epub 2010 Jul 30.
9
Inkjet-printed paperfluidic immuno-chemical sensing device.
Anal Bioanal Chem. 2010 Sep;398(2):885-93. doi: 10.1007/s00216-010-4011-2. Epub 2010 Jul 21.
10
Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices.
Analyst. 2010 May;135(5):845-67. doi: 10.1039/b916888e. Epub 2010 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验