State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China.
IET Nanobiotechnol. 2019 Sep;13(7):651-664. doi: 10.1049/iet-nbt.2018.5374.
By integrating organic parts achieved through evolution and inorganic parts developed by human civilisation, the cyborg microrobot is rising by taking advantage of the high flexibility, outstanding energy efficiency, extremely exquisite structure in the natural components and the fine upgradability, nice controllability in the artefact parts. Compared to the purely synthetic microrobots, the cyborg microrobots, due to the exceptional biocompatibility and biodegradability, have already been utilised in in situ diagnosis, precise therapy and other biomedical applications. In this review, through a thorough summary of recent advances of cyborg microrobots, the authors categorise the cyborg microrobots into four major classes according to the configuration between biomaterials and artefact materials, microrobots integrated inside living cell, microrobots modified with biological debris, microrobots integrated with single cell and microrobots incorporated with multiple cells. Cyborg microrobots with the four types of configurations are introduced and summarised with the combination approaches, actuation mechanisms, applications and challenges one by one. Moreover, they conduct a comparison among the four different cyborg microrobots to guide the actuation force promotion, locomotion control refinement and future applications. Finally, conclusions and future outlook of the development and potential applications of the cyborg microrobots are discussed.
通过整合通过进化获得的有机部分和人类文明开发的无机部分,生物混合微型机器人利用自然组件的高灵活性、卓越的能量效率、极其精致的结构以及人造组件的精细可升级性和良好的可控性而崛起。与纯粹的合成微型机器人相比,由于出色的生物相容性和可生物降解性,生物混合微型机器人已经在原位诊断、精确治疗和其他生物医学应用中得到了应用。在这篇综述中,作者通过对生物混合微型机器人的最新进展进行全面总结,根据生物材料和人造材料的配置将生物混合微型机器人分为四大类,即活细胞内集成的微型机器人、生物碎屑修饰的微型机器人、单细胞集成的微型机器人和多细胞集成的微型机器人。介绍了具有这四种配置的生物混合微型机器人,并一一介绍了它们的组合方法、驱动机制、应用和挑战。此外,它们还对这四种不同的生物混合微型机器人进行了比较,以指导驱动力的提升、运动控制的细化和未来的应用。最后,讨论了生物混合微型机器人的发展和潜在应用的结论和未来展望。