Suppr超能文献

黄色素生物合成与谷氨酸棒杆菌的过量生产。

Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.

机构信息

Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P,O, Box 100131, D-33501, Bielefeld, Germany.

出版信息

BMC Microbiol. 2012 Sep 10;12:198. doi: 10.1186/1471-2180-12-198.

Abstract

BACKGROUND

Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin.

RESULTS

Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 ε-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum ΔcrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum ΔcrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 ± 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum ΔcrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 ± 0.3 mg/g CDW were obtained.

CONCLUSION

C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.

摘要

背景

谷氨酸棒杆菌含有糖基化的 C50 类胡萝卜素脱植基叶黄素作为黄色色素。从异戊烯焦磷酸开始,它在非甲羟戊酸途径中产生,脱植基叶黄素通过中间体法呢基焦磷酸、香叶基香叶基焦磷酸、番茄红素和叶黄素合成。

结果

在这里,我们表明,类胡萝卜素基因簇 crtE-cg0722-crtBIYeYfEb 的基因是共转录的,并对定义的基因缺失突变体进行了特征描述。基因缺失分析表明,crtI、crtEb 和 crtYeYf 分别编码唯一的类胡萝卜素脱氢酶、番茄红素延伸酶和类胡萝卜素 C45/C50 ε-环化酶。然而,谷氨酸棒杆菌的基因组还编码第二个类胡萝卜素基因簇,包括 crtB2I2-1/2,该基因簇被证明是共转录的。外源表达 crtB2 可以弥补谷氨酸棒杆菌ΔcrtB 中类胡萝卜素合酶 CrtB 的缺乏,因此,谷氨酸棒杆菌拥有两种功能性的类胡萝卜素合酶,即 CrtB 和 CrtB2。由于不能从质粒上表达 crtI2-1/2 来弥补谷氨酸棒杆菌ΔcrtI 中类胡萝卜素脱氢酶 CrtI 的缺乏,因此无法获得 crtI2-1/2 编码的类胡萝卜素脱氢酶的遗传证据。以番茄红素为例,估计了谷氨酸棒杆菌过量生产类胡萝卜素的潜力。crtEb 基因的缺失阻止了番茄红素转化为脱植基叶黄素,并导致番茄红素积累到 0.03±0.01mg/g 细胞干重(CDW)。当在谷氨酸棒杆菌ΔcrtEb 中过表达 crtE、crtB 和 crtI 基因以将香叶基香叶基焦磷酸转化为番茄红素时,获得了强烈红色着色的细胞和 80 倍增加的番茄红素含量 2.4±0.3mg/g CDW。

结论

谷氨酸棒杆菌在 C50 类胡萝卜素脱植基叶黄素的生物合成中具有一定程度的冗余性,因为它拥有两种功能性的类胡萝卜素合酶基因。仅对导致番茄红素的末端反应进行代谢工程改造就导致了相当大的番茄红素产量,表明谷氨酸棒杆菌可能成为类胡萝卜素生产的潜在宿主。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3617/3598387/dca91c3d8d61/1471-2180-12-198-1.jpg

相似文献

1
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
BMC Microbiol. 2012 Sep 10;12:198. doi: 10.1186/1471-2180-12-198.
3
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2014 Feb;98(3):1223-35. doi: 10.1007/s00253-013-5359-y. Epub 2013 Nov 24.
5
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Front Bioeng Biotechnol. 2014 Aug 20;2:28. doi: 10.3389/fbioe.2014.00028. eCollection 2014.
6
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
FEBS J. 2014 Nov;281(21):4906-20. doi: 10.1111/febs.13033. Epub 2014 Sep 30.
8
Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C(30), C(35), C(40), C(45), C(50) carotenoids.
Biotechnol Adv. 2007 May-Jun;25(3):211-22. doi: 10.1016/j.biotechadv.2006.12.001. Epub 2006 Dec 19.
9
Expanding the CRISPR Toolbox for Engineering Lycopene Biosynthesis in .
Microorganisms. 2024 Apr 16;12(4):803. doi: 10.3390/microorganisms12040803.
10
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
J Biotechnol. 2014 Dec 10;191:205-13. doi: 10.1016/j.jbiotec.2014.05.032. Epub 2014 Jun 6.

引用本文的文献

2
Microbial Bacterioruberin: A Comprehensive Review.
Indian J Microbiol. 2024 Dec;64(4):1477-1501. doi: 10.1007/s12088-024-01312-8. Epub 2024 May 25.
3
Application of valencene and prospects for its production in engineered microorganisms.
Front Microbiol. 2024 Aug 7;15:1444099. doi: 10.3389/fmicb.2024.1444099. eCollection 2024.
4
Expanding the CRISPR Toolbox for Engineering Lycopene Biosynthesis in .
Microorganisms. 2024 Apr 16;12(4):803. doi: 10.3390/microorganisms12040803.
5
Chemical composition and microbiota changes across musk secretion stages of forest musk deer.
Front Microbiol. 2024 Mar 5;15:1322316. doi: 10.3389/fmicb.2024.1322316. eCollection 2024.
7
Overproduction of Pigment in sp. JSWR-1 under Optimized Culture Conditions.
J Microbiol Biotechnol. 2024 Mar 28;34(3):710-724. doi: 10.4014/jmb.2310.10034. Epub 2023 Nov 24.
8
Accelerating the design of pili-enabled living materials using an integrative technological workflow.
Nat Chem Biol. 2024 Feb;20(2):201-210. doi: 10.1038/s41589-023-01489-x. Epub 2023 Nov 27.
10
Extraction and Purification of Highly Active Astaxanthin from Fermentation Broth.
Mar Drugs. 2023 Oct 11;21(10):530. doi: 10.3390/md21100530.

本文引用的文献

1
Pathway engineering for functional isoprenoids.
Curr Opin Biotechnol. 2011 Oct;22(5):627-33. doi: 10.1016/j.copbio.2011.01.002. Epub 2011 Feb 9.
2
Sigma factors and promoters in Corynebacterium glutamicum.
J Biotechnol. 2011 Jul 10;154(2-3):101-13. doi: 10.1016/j.jbiotec.2011.01.017. Epub 2011 Jan 26.
3
Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli.
Appl Microbiol Biotechnol. 2011 Apr;90(2):489-97. doi: 10.1007/s00253-011-3091-z. Epub 2011 Jan 19.
6
Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13654-9. doi: 10.1073/pnas.1006138107. Epub 2010 Jul 19.
8
Biosynthesis of plant isoprenoids: perspectives for microbial engineering.
Annu Rev Plant Biol. 2009;60:335-55. doi: 10.1146/annurev.arplant.043008.091955.
9
Genes and enzymes involved in bacterial isoprenoid biosynthesis.
Curr Opin Chem Biol. 2009 Apr;13(2):180-8. doi: 10.1016/j.cbpa.2009.02.029. Epub 2009 Mar 21.
10
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
J Bacteriol. 2008 Oct;190(19):6458-66. doi: 10.1128/JB.00780-08. Epub 2008 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验