Suppr超能文献

奥美沙坦酯表面吸附型纳米胶束胶囊剂的制剂研发研究。

Product development studies on surface-adsorbed nanoemulsion of olmesartan medoxomil as a capsular dosage form.

机构信息

Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, 281001, Uttar Pradesh, India.

出版信息

AAPS PharmSciTech. 2012 Dec;13(4):1212-21. doi: 10.1208/s12249-012-9847-7. Epub 2012 Sep 11.

Abstract

The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (-58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.

摘要

本研究旨在开发 olmesartan medoxomil(OLM)的囊剂型表面吸附纳米乳(NE),以克服处理液体 NE 时的局限性,同时不影响其药物疗效。根据药物在这些辅料中的溶解度,选择油、表面活性剂和助表面活性剂来构建伪三元相图。合理选择的 NE 制剂的评估参数包括透光率百分比、粘度、折射率、液滴大小、Zeta 电位和多分散指数(PDI)。包含 Capmul MCM®(10%v/v)、Tween 80®(11.25%v/v)、聚乙二醇 400(3.75%v/v)和双蒸水(75%v/v)的配方(F3)显示出最高的累积药物释放百分比(%CDR;96.69±1.841)、最小的液滴尺寸(17.51±5.87nm)、低 PDI(0.203±0.032)、高 Zeta 电位(-58.93±0.98mV),因此被选为最佳配方。F3 被吸附在胶体硅上(2ml/400mg),产生易于流动的固体表面吸附 NE,形成可填充胶囊的组成。将 NE 转化为表面吸附 NE 及其再构成 NE 并不影响 OLM 的体外释放曲线,因为相对于 NE 的相似因子分别为 66%和 73%。优化的 NE、表面吸附 NE 和再构成 NE 在 12 小时后的累积药物释放百分比(%CDR)分别为 96.69±0.54、96.07±1.76 和 94.78±1.57(p>0.05)。本研究建立了囊封的表面吸附 NE 作为一种可行的给药系统,具有克服 NE 处理局限性的潜力。

相似文献

1
Product development studies on surface-adsorbed nanoemulsion of olmesartan medoxomil as a capsular dosage form.
AAPS PharmSciTech. 2012 Dec;13(4):1212-21. doi: 10.1208/s12249-012-9847-7. Epub 2012 Sep 11.
2
Anticancer efficacy, tissue distribution and blood pharmacokinetics of surface modified nanocarrier containing melphalan.
Int J Pharm. 2012 Apr 15;426(1-2):219-230. doi: 10.1016/j.ijpharm.2012.01.027. Epub 2012 Jan 24.
3
Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.
Drug Dev Ind Pharm. 2017 Apr;43(4):611-617. doi: 10.1080/03639045.2016.1275666. Epub 2017 Jan 8.
4
Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers.
AAPS PharmSciTech. 2012 Dec;13(4):1416-27. doi: 10.1208/s12249-012-9865-5. Epub 2012 Oct 16.
5
Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency.
Drug Dev Ind Pharm. 2018 Feb;44(2):316-328. doi: 10.1080/03639045.2017.1391836. Epub 2017 Nov 2.
6
Formulation, optimization, and in vitro-in vivo evaluation of olmesartan medoxomil nanocrystals.
Drug Deliv Transl Res. 2017 Apr;7(2):292-303. doi: 10.1007/s13346-016-0355-2.
7
Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe.
Colloids Surf B Biointerfaces. 2010 Apr 1;76(2):410-20. doi: 10.1016/j.colsurfb.2009.11.021. Epub 2009 Dec 5.
8
Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B.
Drug Deliv. 2016 Oct;23(8):3101-3110. doi: 10.3109/10717544.2016.1153747. Epub 2016 Mar 8.
9
Development and bioavailability assessment of ramipril nanoemulsion formulation.
Eur J Pharm Biopharm. 2007 May;66(2):227-43. doi: 10.1016/j.ejpb.2006.10.014. Epub 2006 Oct 24.
10
Solubilized formulation of olmesartan medoxomil for enhancing oral bioavailability.
Arch Pharm Res. 2009 Nov;32(11):1629-35. doi: 10.1007/s12272-009-2117-x.

引用本文的文献

1
Lipid Horizons: Recent Advances and Future Prospects in LBDDS for Oral Administration of Antihypertensive Agents.
Int J Hypertens. 2024 Feb 19;2024:2430147. doi: 10.1155/2024/2430147. eCollection 2024.
3
Optimized Green Nanoemulsions to Remove Pharmaceutical Enoxacin from Contaminated Bulk Aqueous Solution.
ACS Omega. 2023 Mar 13;8(12):11100-11117. doi: 10.1021/acsomega.2c07942. eCollection 2023 Mar 28.
5
Oral bioavailability: issues and solutions via nanoformulations.
Clin Pharmacokinet. 2015 Apr;54(4):325-57. doi: 10.1007/s40262-015-0242-x.

本文引用的文献

1
Anticancer efficacy, tissue distribution and blood pharmacokinetics of surface modified nanocarrier containing melphalan.
Int J Pharm. 2012 Apr 15;426(1-2):219-230. doi: 10.1016/j.ijpharm.2012.01.027. Epub 2012 Jan 24.
2
Nanocarrier for the enhanced bioavailability of a cardiovascular agent: in vitro, pharmacodynamic, pharmacokinetic and stability assessment.
Int J Pharm. 2011 Jan 17;403(1-2):46-56. doi: 10.1016/j.ijpharm.2010.10.018. Epub 2010 Oct 20.
3
Novel amides and esters prodrugs of olmesartan: Synthesis, bioconversion, and pharmacokinetic evaluation.
Bioorg Med Chem Lett. 2010 Oct 1;20(19):5895-9. doi: 10.1016/j.bmcl.2010.07.089. Epub 2010 Jul 25.
4
Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability.
Drug Discov Today. 2010 Nov;15(21-22):958-65. doi: 10.1016/j.drudis.2010.08.007. Epub 2010 Aug 17.
5
Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein.
Arch Pharm Res. 2010 Mar;33(3):417-26. doi: 10.1007/s12272-010-0311-5. Epub 2010 Mar 30.
6
Nanonization strategies for poorly water-soluble drugs.
Drug Discov Today. 2011 Apr;16(7-8):354-60. doi: 10.1016/j.drudis.2010.02.009. Epub 2010 Mar 3.
7
Solubilized formulation of olmesartan medoxomil for enhancing oral bioavailability.
Arch Pharm Res. 2009 Nov;32(11):1629-35. doi: 10.1007/s12272-009-2117-x.
8
Development of SMEDDS using natural lipophile: application to beta-Artemether delivery.
Int J Pharm. 2008 Oct 1;362(1-2):179-83. doi: 10.1016/j.ijpharm.2008.06.021. Epub 2008 Jul 3.
9
Identification of a degradation product in stressed tablets of olmesartan medoxomil by the complementary use of HPLC hyphenated techniques.
J Pharm Biomed Anal. 2008 Jul 15;47(3):553-9. doi: 10.1016/j.jpba.2008.02.021. Epub 2008 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验