Zahedmanesh Houman, Van Oosterwyck Hans, Lally Caitríona
a Biomechanics Section, Department of Mechanical Engineering , KU Leuven , Leuven , Belgium.
Comput Methods Biomech Biomed Engin. 2014;17(8):813-28. doi: 10.1080/10255842.2012.716830. Epub 2012 Sep 12.
Since their first introduction, stents have revolutionised the treatment of atherosclerosis; however, the development of in-stent restenosis still remains the Achilles' heel of stent deployment procedures. Computational modelling can be used as a means to model the biological response of arteries to different stent designs using mechanobiological models, whereby the mechanical environment may be used to dictate the growth and remodelling of vascular cells. Changes occurring within the arterial wall due to stent-induced mechanical injury, specifically changes within the extracellular matrix, have been postulated to be a major cause of activation of vascular smooth muscle cells and the subsequent development of in-stent restenosis. In this study, a mechanistic multi-scale mechanobiological model of in-stent restenosis using finite element models and agent-based modelling is presented, which allows quantitative evaluation of the collagen matrix turnover following stent-induced arterial injury and the subsequent development of in-stent restenosis. The model is specifically used to study the influence of stent deployment diameter and stent strut thickness on the level of in-stent restenosis. The model demonstrates that there exists a direct correlation between the stent deployment diameter and the level of in-stent restenosis. In addition, investigating the influence of stent strut thickness using the mechanobiological model reveals that thicker strut stents induce a higher level of in-stent restenosis due to a higher extent of arterial injury. The presented mechanobiological modelling framework provides a robust platform for testing hypotheses on the mechanisms underlying the development of in-stent restenosis and lends itself for use as a tool for optimisation of the mechanical parameters involved in stent design.
自首次引入以来,支架彻底改变了动脉粥样硬化的治疗方式;然而,支架内再狭窄的发生仍然是支架植入手术的致命弱点。计算建模可作为一种手段,使用力学生物学模型对动脉对不同支架设计的生物学反应进行建模,从而利用机械环境来决定血管细胞的生长和重塑。由于支架引起的机械损伤而在动脉壁内发生的变化,特别是细胞外基质内的变化,被认为是血管平滑肌细胞活化以及随后支架内再狭窄发生的主要原因。在本研究中,提出了一种使用有限元模型和基于智能体的建模方法的支架内再狭窄的多尺度力学生物学机制模型,该模型允许对支架引起的动脉损伤后胶原基质的周转以及随后支架内再狭窄的发生进行定量评估。该模型专门用于研究支架植入直径和支架支柱厚度对支架内再狭窄程度的影响。该模型表明,支架植入直径与支架内再狭窄程度之间存在直接相关性。此外,使用力学生物学模型研究支架支柱厚度的影响表明,较厚支柱的支架由于动脉损伤程度较高,会导致更高水平的支架内再狭窄。所提出的力学生物学建模框架为测试关于支架内再狭窄发生机制的假设提供了一个强大的平台,并适合用作优化支架设计中涉及的机械参数的工具。