Suppr超能文献

通过分析超速离心和总有机碳分析测定溶液中纳米粒子的接枝密度。

Measuring the grafting density of nanoparticles in solution by analytical ultracentrifugation and total organic carbon analysis.

机构信息

Department of Chemistry, Rice University, Houston, Texas 77005, United States.

出版信息

Anal Chem. 2012 Nov 6;84(21):9238-45. doi: 10.1021/ac301980a. Epub 2012 Oct 9.

Abstract

Many of the solution phase properties of nanoparticles, such as their colloidal stability and hydrodynamic diameter, are governed by the number of stabilizing groups bound to the particle surface (i.e., grafting density). Here, we show how two techniques, analytical ultracentrifugation (AUC) and total organic carbon analysis (TOC), can be applied separately to the measurement of this parameter. AUC directly measures the density of nanoparticle-polymer conjugates while TOC provides the total carbon content of its aqueous dispersions. When these techniques are applied to model gold nanoparticles capped with thiolated poly(ethylene glycol), the measured grafting densities across a range of polymer chain lengths, polymer concentrations, and nanoparticle diameters agree to within 20%. Moreover, the measured grafting densities correlate well with the polymer content determined by thermogravimetric analysis of solid conjugate samples. Using these tools, we examine the particle core diameter, polymer chain length, and polymer solution concentration dependence of nanoparticle grafting densities in a gold nanoparticle-poly(ethylene glycol) conjugate system.

摘要

许多纳米粒子的溶液相性质,如胶体稳定性和水动力直径,都受粒子表面结合的稳定基团数量(即接枝密度)的控制。在这里,我们展示了两种技术,分析超速离心(AUC)和总有机碳分析(TOC),如何分别应用于该参数的测量。AUC 直接测量纳米粒子-聚合物缀合物的密度,而 TOC 提供其水分散体的总碳含量。当将这些技术应用于巯基化聚乙二醇封端的金纳米粒子时,在一系列聚合物链长、聚合物浓度和纳米粒子直径范围内测量的接枝密度相差不超过 20%。此外,测量的接枝密度与通过固体缀合物样品的热重分析确定的聚合物含量很好地相关。使用这些工具,我们研究了在金纳米粒子-聚乙二醇缀合物体系中,颗粒核心直径、聚合物链长和聚合物溶液浓度对接枝密度的影响。

相似文献

4
Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems.
J Biomed Mater Res A. 2007 Dec 1;83(3):692-5. doi: 10.1002/jbm.a.31284.
7
A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers.
Langmuir. 2015 Aug 25;31(33):9205-13. doi: 10.1021/acs.langmuir.5b01838. Epub 2015 Aug 14.
8
Orthogonal analysis of functional gold nanoparticles for biomedical applications.
Anal Bioanal Chem. 2015 Nov;407(28):8411-22. doi: 10.1007/s00216-015-9011-9. Epub 2015 Sep 11.
10
Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers.
Langmuir. 2006 Jul 18;22(15):6690-5. doi: 10.1021/la060758h.

引用本文的文献

1
The Art of PEGylation: From Simple Polymer to Sophisticated Drug Delivery System.
Int J Mol Sci. 2025 Mar 27;26(7):3102. doi: 10.3390/ijms26073102.
2
Kinetically Arrested SERS-Active Aggregates for Biosensing.
Chemistry. 2025 Jul 8;31(38):e202500915. doi: 10.1002/chem.202500915. Epub 2025 Jun 17.
4
Polymer-Grafted Nanoparticles with Variable Grafting Densities for High Energy Density Polymeric Nanocomposite Dielectric Capacitors.
JACS Au. 2023 Apr 26;3(5):1365-1375. doi: 10.1021/jacsau.3c00022. eCollection 2023 May 22.
6
Distinct thermoresponsive behaviour of oligo- and poly-ethylene glycol protected gold nanoparticles in concentrated salt solutions.
Nanoscale Adv. 2021 Jul 2;3(16):4767-4779. doi: 10.1039/d1na00392e. eCollection 2021 Aug 10.
8
When function is biological: Discerning how silver nanoparticle structure dictates antimicrobial activity.
iScience. 2022 May 30;25(7):104475. doi: 10.1016/j.isci.2022.104475. eCollection 2022 Jul 15.
9
Versatile strategy for homogeneous drying patterns of dispersed particles.
Nat Commun. 2022 May 23;13(1):2840. doi: 10.1038/s41467-022-30497-z.
10
One-Step Preparation of Highly Stable Copper-Zinc Ferrite Nanoparticles in Water Suitable for MRI Thermometry.
Chem Mater. 2022 May 10;34(9):4001-4018. doi: 10.1021/acs.chemmater.2c00079. Epub 2022 Apr 20.

本文引用的文献

2
Quantifying the coverage density of poly(ethylene glycol) chains on the surface of gold nanostructures.
ACS Nano. 2012 Jan 24;6(1):512-22. doi: 10.1021/nn2038516. Epub 2011 Dec 19.
3
Nanoparticle PEGylation for imaging and therapy.
Nanomedicine (Lond). 2011 Jun;6(4):715-28. doi: 10.2217/nnm.11.19.
5
Targeting kidney mesangium by nanoparticles of defined size.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6656-61. doi: 10.1073/pnas.1103573108. Epub 2011 Apr 4.
6
Quartz crystal microbalances for microscale thermogravimetric analysis.
Anal Chem. 2010 Dec 15;82(24):9977-82. doi: 10.1021/ac102030z. Epub 2010 Nov 16.
7
Determination of the surfactant density on SWCNTs by analytical ultracentrifugation.
Chemistry. 2010 Nov 22;16(44):13176-84. doi: 10.1002/chem.200903461.
9
Applying analytical ultracentrifugation to nanocrystal suspensions.
Nanotechnology. 2009 Sep 2;20(35):355702. doi: 10.1088/0957-4484/20/35/355702. Epub 2009 Aug 12.
10
Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.
Adv Drug Deliv Rev. 2009 Jun 21;61(6):428-37. doi: 10.1016/j.addr.2009.03.009. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验