Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Inorg Chem. 2012 Oct 1;51(19):10185-92. doi: 10.1021/ic301022g. Epub 2012 Sep 11.
Four new oxyselenides with nominal formula Sr(2)AO(2)M(2)Se(2) (A=Co, Mn; M=Cu, Ag) have been synthesized. They all crystallize in an I4/mmm space group and consist of alternating perovskite-like (Sr(2)AO(2))(2+) blocks and antiflourie (M(2)Se(2))(2-) layers, which are relatively rare layered oxyselenides reported so far that are isostructural to Sr(2)Mn(3)Sb(2)O(2). From powder X-ray diffraction data, compounds Sr(2)CoO(2)Cu(2)Se(2) and Sr(2)CoO(2)Ag(2)Se(2) are found near stoichiometric, whereas Sr(2)MnO(2)Cu(2-δ)Se(2) and Sr(2)MnO(2)Ag(2-δ)Se(2) possess substantial copper or silver vacancies (δ≈0.5), consistent with their oxysulfide analogues. X-ray photoelectron spectroscopy measurements indicate the readily oxidization of Mn(2+) ions should be responsible for the occurrence of Cu/Ag vacancies. The rigid (Sr(2)AO(2))(2+) blocks within these compounds constrain the basal lattice parameters in the ab plane and result in largely deformed tetrahedral sites for the large silver ions. Magnetic susceptibility measurements of Sr(2)CoO(2)M(2)Se(2) (M=Cu, Ag) show complex antiferromagnetic transitions, while Sr(2)MnO(2)M(2-δ)Se(2) (M=Cu, Ag) show high-temperature Curie-Weiss behavior, followed by low-temperature antiferromagnetic transitions at 54 K and 67 K, respectively. Except for Sr(2)MnO(2)Ag(2-δ)Se(2), the other three compounds exhibit p-type semiconducting transport properties, with the measured resistivities several orders lower than their oxysulfide analogues. Hall measurement reveals high mobilities of Sr(2)CoO(2)M(2)Se(2) (M=Cu, Ag) compounds at room temperature. The unusually small optical band gaps (~0.07 eV) of Sr(2)CoO(2)Cu(2)Se(2), Sr(2)CoO(2)Ag(2)Se(2), and Sr(2)MnO(2)Cu(2-δ)Se(2) are also reported.
四种具有通式 Sr(2)AO(2)M(2)Se(2)(A=Co,Mn;M=Cu,Ag)的新型氧硒化物已被合成。它们都结晶在 I4/mmm 空间群中,由交替的钙钛矿状(Sr(2)AO(2))(2+)块和反氟里叶(M(2)Se(2))(2-)层组成,这是迄今为止报道的相对罕见的层状氧硒化物,与 Sr(2)Mn(3)Sb(2)O(2)结构相同。从粉末 X 射线衍射数据来看,化合物 Sr(2)CoO(2)Cu(2)Se(2)和 Sr(2)CoO(2)Ag(2)Se(2)接近化学计量比,而 Sr(2)MnO(2)Cu(2-δ)Se(2)和 Sr(2)MnO(2)Ag(2-δ)Se(2)则具有大量的铜或银空位(δ≈0.5),这与它们的氧硫化物类似物一致。X 射线光电子能谱测量表明,Mn(2+)离子的易氧化应负责 Cu/Ag 空位的产生。这些化合物中刚性的(Sr(2)AO(2))(2+)块限制了 ab 平面的基面晶格参数,并导致大银离子的四面体位置严重变形。Sr(2)CoO(2)M(2)Se(2)(M=Cu,Ag)的磁化率测量显示出复杂的反铁磁转变,而 Sr(2)MnO(2)M(2-δ)Se(2)(M=Cu,Ag)在高温下表现出居里-外斯行为,随后在 54 K 和 67 K 分别发生低温反铁磁转变。除了 Sr(2)MnO(2)Ag(2-δ)Se(2)之外,其他三种化合物都表现出 p 型半导体输运性质,其测量电阻比它们的氧硫化物类似物低几个数量级。霍尔测量表明,Sr(2)CoO(2)M(2)Se(2)(M=Cu,Ag)化合物在室温下具有高迁移率。Sr(2)CoO(2)Cu(2)Se(2)、Sr(2)CoO(2)Ag(2)Se(2)和 Sr(2)MnO(2)Cu(2-δ)Se(2)的光学带隙也非常小(约 0.07 eV)。