Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
Neuroinformatics. 2013 Jan;11(1):65-75. doi: 10.1007/s12021-012-9160-3.
The identifying or sensitive anatomical features in MR and CT images used in research raise patient privacy concerns when such data are shared. In order to protect human subject privacy, we developed a method of anatomical surface modification and investigated the effects of such modification on image statistics and common neuroimaging processing tools. Common approaches to obscuring facial features typically remove large portions of the voxels. The approach described here focuses on blurring the anatomical surface instead, to avoid impinging on areas of interest and hard edges that can confuse processing tools. The algorithm proceeds by extracting a thin boundary layer containing surface anatomy from a region of interest. This layer is then "stretched" and "flattened" to fit into a thin "box" volume. After smoothing along a plane roughly parallel to anatomy surface, this volume is transformed back onto the boundary layer of the original data. The above method, named normalized anterior filtering, was coded in MATLAB and applied on a number of high resolution MR and CT scans. To test its effect on automated tools, we compared the output of selected common skull stripping and MR gain field correction methods used on unmodified and obscured data. With this paper, we hope to improve the understanding of the effect of surface deformation approaches on the quality of de-identified data and to provide a useful de-identification tool for MR and CT acquisitions.
在研究中使用的磁共振(MR)和计算机断层扫描(CT)图像中的识别或敏感解剖特征在共享此类数据时会引发患者隐私问题。为了保护人类受试者的隐私,我们开发了一种解剖表面修改方法,并研究了这种修改对图像统计和常见神经影像学处理工具的影响。常见的模糊面部特征的方法通常会删除大量体素。这里描述的方法侧重于模糊解剖表面,以避免影响感兴趣区域和可能使处理工具混淆的硬边缘。该算法通过从感兴趣区域提取包含表面解剖结构的薄边界层来进行。然后将该层“拉伸”和“展平”以适合薄的“盒子”体积。在与解剖表面大致平行的平面上平滑之后,该体积被转换回原始数据的边界层。该方法名为归一化前向滤波,用 MATLAB 编写,并应用于许多高分辨率 MR 和 CT 扫描。为了测试其对自动化工具的影响,我们比较了在未修改和模糊数据上使用的选定常见颅骨剥离和 MR 增益场校正方法的输出。通过本文,我们希望提高对表面变形方法对去识别数据质量的影响的理解,并为 MR 和 CT 采集提供有用的去识别工具。