Suppr超能文献

容积成像数据中表面解剖结构的遮蔽。

Obscuring surface anatomy in volumetric imaging data.

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.

出版信息

Neuroinformatics. 2013 Jan;11(1):65-75. doi: 10.1007/s12021-012-9160-3.

Abstract

The identifying or sensitive anatomical features in MR and CT images used in research raise patient privacy concerns when such data are shared. In order to protect human subject privacy, we developed a method of anatomical surface modification and investigated the effects of such modification on image statistics and common neuroimaging processing tools. Common approaches to obscuring facial features typically remove large portions of the voxels. The approach described here focuses on blurring the anatomical surface instead, to avoid impinging on areas of interest and hard edges that can confuse processing tools. The algorithm proceeds by extracting a thin boundary layer containing surface anatomy from a region of interest. This layer is then "stretched" and "flattened" to fit into a thin "box" volume. After smoothing along a plane roughly parallel to anatomy surface, this volume is transformed back onto the boundary layer of the original data. The above method, named normalized anterior filtering, was coded in MATLAB and applied on a number of high resolution MR and CT scans. To test its effect on automated tools, we compared the output of selected common skull stripping and MR gain field correction methods used on unmodified and obscured data. With this paper, we hope to improve the understanding of the effect of surface deformation approaches on the quality of de-identified data and to provide a useful de-identification tool for MR and CT acquisitions.

摘要

在研究中使用的磁共振(MR)和计算机断层扫描(CT)图像中的识别或敏感解剖特征在共享此类数据时会引发患者隐私问题。为了保护人类受试者的隐私,我们开发了一种解剖表面修改方法,并研究了这种修改对图像统计和常见神经影像学处理工具的影响。常见的模糊面部特征的方法通常会删除大量体素。这里描述的方法侧重于模糊解剖表面,以避免影响感兴趣区域和可能使处理工具混淆的硬边缘。该算法通过从感兴趣区域提取包含表面解剖结构的薄边界层来进行。然后将该层“拉伸”和“展平”以适合薄的“盒子”体积。在与解剖表面大致平行的平面上平滑之后,该体积被转换回原始数据的边界层。该方法名为归一化前向滤波,用 MATLAB 编写,并应用于许多高分辨率 MR 和 CT 扫描。为了测试其对自动化工具的影响,我们比较了在未修改和模糊数据上使用的选定常见颅骨剥离和 MR 增益场校正方法的输出。通过本文,我们希望提高对表面变形方法对去识别数据质量的影响的理解,并为 MR 和 CT 采集提供有用的去识别工具。

相似文献

1
Obscuring surface anatomy in volumetric imaging data.
Neuroinformatics. 2013 Jan;11(1):65-75. doi: 10.1007/s12021-012-9160-3.
3
A technique for the deidentification of structural brain MR images.
Hum Brain Mapp. 2007 Sep;28(9):892-903. doi: 10.1002/hbm.20312.
4
Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.
Comput Methods Programs Biomed. 2016 Feb;124:31-44. doi: 10.1016/j.cmpb.2015.10.009. Epub 2015 Oct 23.
5
Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.
Med Phys. 2019 Mar;46(3):1272-1285. doi: 10.1002/mp.13373. Epub 2019 Feb 5.
6
Skull stripping based on region growing for magnetic resonance brain images.
Neuroimage. 2009 Oct 1;47(4):1394-407. doi: 10.1016/j.neuroimage.2009.04.047. Epub 2009 Apr 21.
8
New method to assess the registration of CT-MR images of the head.
Injury. 2004 Jun;35 Suppl 1:S-A105-12. doi: 10.1016/j.injury.2004.05.018.
9
Facing privacy in neuroimaging: removing facial features degrades performance of image analysis methods.
Eur Radiol. 2020 Feb;30(2):1062-1074. doi: 10.1007/s00330-019-06459-3. Epub 2019 Nov 5.
10
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.

引用本文的文献

1
Spurious correlations in surface-based functional brain imaging.
Imaging Neurosci (Camb). 2025 Feb 18;3. doi: 10.1162/imag_a_00478. eCollection 2025.
2
Demystifying the likelihood of reidentification in neuroimaging data: A technical and regulatory analysis.
Imaging Neurosci (Camb). 2024 Mar 22;2. doi: 10.1162/imag_a_00111. eCollection 2024.
3
Integrating anatomical and functional landmarks for interparticipant alignment of imaging data.
Imaging Neurosci (Camb). 2024 Aug 1;2. doi: 10.1162/imag_a_00253. eCollection 2024.
5
Pseudonymisation of neuroimages and data protection: .
Neuroimage Rep. 2021 Sep 15;1(4):100053. doi: 10.1016/j.ynirp.2021.100053. eCollection 2021 Dec.
7
Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy.
Int J Comput Assist Radiol Surg. 2025 May 29. doi: 10.1007/s11548-025-03421-1.
8
Neuroimaging Biomarkers for Friedreich Ataxia: A Cross-Sectional Analysis of the TRACK-FA Study.
Ann Neurol. 2025 Aug;98(2):386-397. doi: 10.1002/ana.27237. Epub 2025 Mar 22.
9
A deep generative prior for high-resolution isotropic MR head slices.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654032. Epub 2023 Apr 3.
10
FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI.
Imaging Neurosci (Camb). 2023 Nov 21;1:1-32. doi: 10.1162/imag_a_00034. eCollection 2023 Nov 1.

本文引用的文献

2
Facial recognition from volume-rendered magnetic resonance imaging data.
IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):5-9. doi: 10.1109/TITB.2008.2003335.
3
Preventing facial recognition when rendering MR images of the head in three dimensions.
Med Image Anal. 2008 Jun;12(3):229-39. doi: 10.1016/j.media.2007.10.008. Epub 2007 Nov 6.
6
A technique for the deidentification of structural brain MR images.
Hum Brain Mapp. 2007 Sep;28(9):892-903. doi: 10.1002/hbm.20312.
7
Registration of [18F]FDG microPET and small-animal MRI.
Nucl Med Biol. 2005 Aug;32(6):567-72. doi: 10.1016/j.nucmedbio.2005.05.002.
9
Fast robust automated brain extraction.
Hum Brain Mapp. 2002 Nov;17(3):143-55. doi: 10.1002/hbm.10062.
10
A global optimisation method for robust affine registration of brain images.
Med Image Anal. 2001 Jun;5(2):143-56. doi: 10.1016/s1361-8415(01)00036-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验