Suppr超能文献

一种用于对脑部结构磁共振图像进行去识别化处理的技术。

A technique for the deidentification of structural brain MR images.

作者信息

Bischoff-Grethe Amanda, Ozyurt I Burak, Busa Evelina, Quinn Brian T, Fennema-Notestine Christine, Clark Camellia P, Morris Shaunna, Bondi Mark W, Jernigan Terry L, Dale Anders M, Brown Gregory G, Fischl Bruce

机构信息

Laboratory of Cognitive Imaging, Department of Psychiatry, University of California, San Diego, La Jolla, USA.

出版信息

Hum Brain Mapp. 2007 Sep;28(9):892-903. doi: 10.1002/hbm.20312.

Abstract

Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated. All voxels outside the mask with a nonzero probability of being a facial feature are set to 0. The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences and four different diagnoses (depressed, Alzheimer's, and elderly and young control groups). Visual inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87-97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004]: Neuroimage 22:1060-1075, in FreeSurfer) or Brain Surface Extractor (Sandor and Leahy [1997]: IEEE Trans Med Imaging 16:41-54; Shattuck et al. [2001]: Neuroimage 13:856-876); defacing did not appreciably influence the outcome of skull-stripping. Results suggested that the automatic defacing algorithm is robust, efficiently removes nonbrain tissue, and does not unduly influence the outcome of the processing methods utilized; in some cases, skull-stripping was improved. Analyses support this algorithm as a viable method to allow data sharing with minimal data alteration within large-scale multisite projects.

摘要

由于对受试者隐私的需求日益增加,能够对结构性磁共振图像进行去识别处理,使其不提供完整面部细节是很有必要的。开发了一个程序,该程序使用非脑结构模型来去除潜在的可识别面部特征。当呈现一幅新图像时,会为输入体积计算最优线性变换(菲施尔等人[2002年]:《神经元》33卷:341 - 355页;菲施尔等人[2004年]:《神经影像学》23卷(增刊1):S69 - S84页)。通过将所有具有非零概率为脑的体素合并,然后进行形态学膨胀来构建脑掩码。掩码外所有具有非零概率为面部特征的体素都设置为0。该算法应用于342个数据集,这些数据集包括两种不同的T1加权脉冲序列和四种不同诊断(抑郁症、阿尔茨海默病以及老年和青年对照组)。目视检查表明没有脑组织被移除。在对去脸处理对颅骨剥离影响的详细分析中,对16个数据集使用N3进行偏差校正(斯莱德等人[1998年]:《IEEE医学影像学汇刊》17卷:87 - 97页),进行去脸处理,然后使用混合分水岭算法(塞贡内等人[2004年]:《神经影像学》22卷:1060 - 1075页,在FreeSurfer中)或脑表面提取器(桑多尔和利希[1997年]:《IEEE医学影像学汇刊》16卷:41 - 54页;沙塔克等人[2001年]:《神经影像学》13卷:856 - 876页)进行颅骨剥离;去脸处理并未明显影响颅骨剥离的结果。结果表明,自动去脸算法稳健,能有效去除非脑组织,且不会过度影响所采用处理方法的结果;在某些情况下,颅骨剥离得到了改善。分析支持该算法作为一种可行的方法,可在大规模多站点项目中以最小的数据改动实现数据共享。

相似文献

1
A technique for the deidentification of structural brain MR images.
Hum Brain Mapp. 2007 Sep;28(9):892-903. doi: 10.1002/hbm.20312.
3
Online resource for validation of brain segmentation methods.
Neuroimage. 2009 Apr 1;45(2):431-9. doi: 10.1016/j.neuroimage.2008.10.066. Epub 2008 Nov 25.
5
Skull-stripping magnetic resonance brain images using a model-based level set.
Neuroimage. 2006 Aug 1;32(1):79-92. doi: 10.1016/j.neuroimage.2006.03.019. Epub 2006 May 11.
6
Robust skull stripping using multiple MR image contrasts insensitive to pathology.
Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.
7
Systematic evaluation of the impact of defacing on quality and volumetric assessments on T1-weighted MR-images.
J Neuroradiol. 2022 May;49(3):250-257. doi: 10.1016/j.neurad.2021.03.001. Epub 2021 Mar 13.
8
Skull stripping based on region growing for magnetic resonance brain images.
Neuroimage. 2009 Oct 1;47(4):1394-407. doi: 10.1016/j.neuroimage.2009.04.047. Epub 2009 Apr 21.
9
The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry.
Neuroimage. 2008 Feb 15;39(4):1654-65. doi: 10.1016/j.neuroimage.2007.10.051. Epub 2007 Nov 12.
10
A hybrid approach to the skull stripping problem in MRI.
Neuroimage. 2004 Jul;22(3):1060-75. doi: 10.1016/j.neuroimage.2004.03.032.

引用本文的文献

1
Demystifying the likelihood of reidentification in neuroimaging data: A technical and regulatory analysis.
Imaging Neurosci (Camb). 2024 Mar 22;2. doi: 10.1162/imag_a_00111. eCollection 2024.
2
Pseudonymisation of neuroimages and data protection: .
Neuroimage Rep. 2021 Sep 15;1(4):100053. doi: 10.1016/j.ynirp.2021.100053. eCollection 2021 Dec.
4
Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy.
Int J Comput Assist Radiol Surg. 2025 May 29. doi: 10.1007/s11548-025-03421-1.
6
CLIMATE BRAIN - Questionnaires, Tasks and the Neuroimaging Dataset.
Sci Data. 2025 May 1;12(1):726. doi: 10.1038/s41597-025-05038-0.
7
Impact of Rod-Dominant Mesopic Conditions on Spatial Summation and Surround Suppression in Early Visual Cortex.
J Neurosci. 2025 May 21;45(21):e1649242025. doi: 10.1523/JNEUROSCI.1649-24.2025.
9
Advancements in Frank's sign Identification using deep learning on 3D brain MRI.
Sci Rep. 2025 Jan 18;15(1):2383. doi: 10.1038/s41598-024-82756-2.
10
Re-identification of anonymised MRI head images with publicly available software: investigation of the current risk to patient privacy.
EClinicalMedicine. 2024 Nov 20;78:102930. doi: 10.1016/j.eclinm.2024.102930. eCollection 2024 Dec.

本文引用的文献

2
Sequence-independent segmentation of magnetic resonance images.
Neuroimage. 2004;23 Suppl 1:S69-84. doi: 10.1016/j.neuroimage.2004.07.016.
3
A meta-algorithm for brain extraction in MRI.
Neuroimage. 2004 Oct;23(2):625-37. doi: 10.1016/j.neuroimage.2004.06.019.
4
A hybrid approach to the skull stripping problem in MRI.
Neuroimage. 2004 Jul;22(3):1060-75. doi: 10.1016/j.neuroimage.2004.03.032.
5
Fast robust automated brain extraction.
Hum Brain Mapp. 2002 Nov;17(3):143-55. doi: 10.1002/hbm.10062.
6
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
Neuron. 2002 Jan 31;33(3):341-55. doi: 10.1016/s0896-6273(02)00569-x.
8
Magnetic resonance image tissue classification using a partial volume model.
Neuroimage. 2001 May;13(5):856-76. doi: 10.1006/nimg.2000.0730.
9
Cortical surface-based analysis. I. Segmentation and surface reconstruction.
Neuroimage. 1999 Feb;9(2):179-94. doi: 10.1006/nimg.1998.0395.
10
A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
IEEE Trans Med Imaging. 1998 Feb;17(1):87-97. doi: 10.1109/42.668698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验