Suppr超能文献

神经影像的假名化与数据保护:

Pseudonymisation of neuroimages and data protection: .

作者信息

Eke Damian, Aasebø Ida E J, Akintoye Simisola, Knight William, Karakasidis Alexandros, Mikulan Ezequiel, Ochang Paschal, Ogoh George, Oostenveld Robert, Pigorini Andrea, Stahl Bernd Carsten, White Tonya, Zehl Lyuba

机构信息

Centre for Computing and Social Responsibility, De Montfort University, Leicester, UK.

University of Oslo, Norway.

出版信息

Neuroimage Rep. 2021 Sep 15;1(4):100053. doi: 10.1016/j.ynirp.2021.100053. eCollection 2021 Dec.

Abstract

For a number of years, facial features removal techniques such as 'defacing', 'skull stripping' and 'face masking/blurring', were considered adequate privacy preserving tools to openly share brain images. Scientifically, these measures were already a compromise between data protection requirements and research impact of such data. Now, recent advances in machine learning and deep learning that indicate an increased possibility of re-identifiability from defaced neuroimages, have increased the tension between open science and data protection requirements. Researchers are left pondering how best to comply with the different jurisdictional requirements of anonymization, pseudonymisation or de-identification without compromising the scientific utility of neuroimages even further. In this paper, we present perspectives intended to clarify the meaning and scope of these concepts and highlight the privacy limitations of available pseudonymisation and de-identification techniques. We also discuss possible technical and organizational measures and safeguards that can facilitate sharing of pseudonymised neuroimages without causing further reductions to the utility of the data.

摘要

多年来,诸如“面部特征去除”“颅骨剥离”和“面部遮挡/模糊处理”等面部特征去除技术,被视为用于公开分享脑部图像的适当隐私保护工具。从科学角度来看,这些措施已然是数据保护要求与此类数据的研究影响之间的一种折衷。如今,机器学习和深度学习方面的最新进展表明,从经过面部处理的神经图像中重新识别身份的可能性增加,这加剧了开放科学与数据保护要求之间的紧张关系。研究人员不禁思考,如何在不进一步损害神经图像科学效用的情况下,最好地遵守匿名化、假名化或去识别化的不同管辖要求。在本文中,我们提出了一些观点,旨在阐明这些概念的含义和范围,并强调现有假名化和去识别化技术的隐私局限性。我们还讨论了可能的技术和组织措施及保障措施,这些措施有助于在不进一步降低数据效用的情况下,实现假名化神经图像的共享。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3beb/12172758/f1b69934556c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验