增强型药代动力学模型诊断方法:条件分布的随机抽样。
Enhanced Method for Diagnosing Pharmacometric Models: Random Sampling from Conditional Distributions.
机构信息
Inria Saclay & CMAP, Ecole Polytechnique, University Paris-Saclay, Saint-Aubin, France.
Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
出版信息
Pharm Res. 2016 Dec;33(12):2979-2988. doi: 10.1007/s11095-016-2020-3. Epub 2016 Sep 7.
PURPOSE
For nonlinear mixed-effects pharmacometric models, diagnostic approaches often rely on individual parameters, also called empirical Bayes estimates (EBEs), estimated through maximizing conditional distributions. When individual data are sparse, the distribution of EBEs can "shrink" towards the same population value, and as a direct consequence, resulting diagnostics can be misleading.
METHODS
Instead of maximizing each individual conditional distribution of individual parameters, we propose to randomly sample them in order to obtain values better spread out over the marginal distribution of individual parameters.
RESULTS
We evaluated, through diagnostic plots and statistical tests, hypothesis related to the distribution of the individual parameters and show that the proposed method leads to more reliable results than using the EBEs. In particular, diagnostic plots are more meaningful, the rate of type I error is correctly controlled and its power increases when the degree of misspecification increases. An application to the warfarin pharmacokinetic data confirms the interest of the approach for practical applications.
CONCLUSIONS
The proposed method should be implemented to complement EBEs-based approach for increasing the performance of model diagnosis.
目的
对于非线性混合效应药代动力学模型,诊断方法通常依赖于个体参数,也称为经验贝叶斯估计(EBE),通过最大化条件分布来估计。当个体数据稀疏时,EBE 的分布可以“收缩”到相同的群体值,并且作为直接后果,导致的诊断可能会产生误导。
方法
我们建议随机抽样个体参数的每个个体条件分布,而不是最大化它们,以便获得更好地分布在个体参数边缘分布上的值。
结果
我们通过诊断图和统计检验评估了与个体参数分布相关的假设,并表明与使用 EBE 相比,该方法得出了更可靠的结果。特别是,诊断图更有意义,I 型错误率得到正确控制,并且当失拟程度增加时,其功效增加。华法林药代动力学数据的应用证实了该方法在实际应用中的意义。
结论
应该实施该方法来补充基于 EBE 的方法,以提高模型诊断的性能。