Suppr超能文献

建立模型、底物对接和突变分析鉴定真核嘌呤-胞嘧啶 NCS1 转运蛋白功能和特异性所必需的残基。

Modeling, substrate docking, and mutational analysis identify residues essential for the function and specificity of a eukaryotic purine-cytosine NCS1 transporter.

机构信息

Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.

出版信息

J Biol Chem. 2012 Oct 26;287(44):36792-803. doi: 10.1074/jbc.M112.400382. Epub 2012 Sep 11.

Abstract

The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H(+) FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1-5 and TMS6-10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.

摘要

最近,我们阐明了细菌 NCS1 家族成员 Mhp1 苯并基-海因水解酶的晶体结构,该酶来自液化微杆菌,这使我们能够构建和验证 Aspergillus nidulans 嘌呤-胞嘧啶/H(+) FcyB 同向转运蛋白的三维模型。该模型由 12 个跨膜α螺旋结构域(TMS)和细胞质 N 端和 C 端组成。一个由两个相互缠绕的反向重复(TMS1-5 和 TMS6-10)组成的独特核心,后面是另外两个 TMS。TMS1、TMS3、TMS6 和 TMS8 形成一个开放的腔,预计该腔容纳底物结合位点。基于一级序列比对、三维拓扑和底物对接,我们确定了 FcyB 中五个可能对底物结合至关重要的残基;Ser-85(TMS1)、Trp-159、Asn-163(TMS3)、Trp-259(TMS6)和 Asn-354(TMS8)。为了验证这些和其他潜在关键残基的作用,我们对相关突变体进行了系统的功能分析。我们表明,提议的底物结合残基,加上 Asn-350、Asn-351 和 Pro-353,对 FcyB 功能是不可替代的。在这些残基中,Ser-85、Asn-163、Asn-350、Asn-351 和 Asn-354 对于确定 FcyB 的底物结合亲和力和/或特异性至关重要。我们的结果表明,Ser-85、Asn-163 和 Asn-354 直接与底物相互作用,Trp-159 和 Trp-259 通过π-π 堆积相互作用稳定结合,Pro-353 影响底物结合位点的局部结构,而 Asn-350 和 Asn-351 可能间接影响底物结合。我们的工作是通过结合遗传和计算方法,首次系统地研究了真核 NCS1 家族成员的结构-功能-特异性关系。

相似文献

3
Origin, diversification and substrate specificity in the family of NCS1/FUR transporters.
Mol Microbiol. 2015 Jun;96(5):927-50. doi: 10.1111/mmi.12982. Epub 2015 Apr 7.
8
Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers.
J Mol Biol. 2008 Oct 24;382(5):1121-35. doi: 10.1016/j.jmb.2008.08.005. Epub 2008 Aug 7.

引用本文的文献

2
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking.
Comput Struct Biotechnol J. 2021 Mar 19;19:1713-1737. doi: 10.1016/j.csbj.2021.03.013. eCollection 2021.
3
Life and Death of Fungal Transporters under the Challenge of Polarity.
Int J Mol Sci. 2020 Jul 29;21(15):5376. doi: 10.3390/ijms21155376.
6
Mechanistic Basis of pH-Dependent 5-Flucytosine Resistance in Aspergillus fumigatus.
Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.02593-17. Print 2018 Jun.
7
Substrate Specificity of the FurE Transporter Is Determined by Cytoplasmic Terminal Domain Interactions.
Genetics. 2017 Dec;207(4):1387-1400. doi: 10.1534/genetics.117.300327. Epub 2017 Oct 4.
8
Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry.
Anal Chem. 2017 Sep 5;89(17):8844-8852. doi: 10.1021/acs.analchem.7b01310. Epub 2017 Aug 9.

本文引用的文献

1
γ-Tubulin plays a key role in inactivating APC/C(Cdh1) at the G(1)-S boundary.
J Cell Biol. 2012 Sep 3;198(5):785-91. doi: 10.1083/jcb.201203115. Epub 2012 Aug 27.
2
Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis.
FEBS Lett. 2012 May 7;586(9):1370-8. doi: 10.1016/j.febslet.2012.03.058. Epub 2012 Apr 3.
3
X-ray structures of LeuT in substrate-free outward-open and apo inward-open states.
Nature. 2012 Jan 9;481(7382):469-74. doi: 10.1038/nature10737.
4
Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment.
Am J Med. 2012 Jan;125(1 Suppl):S3-13. doi: 10.1016/j.amjmed.2011.11.001.
5
Simulations of the alternating access mechanism of the sodium symporter Mhp1.
Biophys J. 2011 Nov 16;101(10):2399-407. doi: 10.1016/j.bpj.2011.09.061. Epub 2011 Nov 15.
6
Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the UapA transporter.
J Mol Biol. 2011 Aug 19;411(3):567-80. doi: 10.1016/j.jmb.2011.06.024. Epub 2011 Jun 29.
7
Nucleoside/nucleobase transporters: drug targets of the future?
Future Med Chem. 2009 May;1(2):303-26. doi: 10.4155/fmc.09.29.
8
The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1.
J Synchrotron Radiat. 2011 Jan;18(1):20-3. doi: 10.1107/S0909049510032449. Epub 2010 Nov 5.
9
Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1.
Science. 2010 Apr 23;328(5977):470-3. doi: 10.1126/science.1186303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验