Suppr超能文献

构巢曲霉脯氨酸通透酶作为理解决定真菌氨基酸转运蛋白底物结合和特异性因素的模型。

The Aspergillus nidulans proline permease as a model for understanding the factors determining substrate binding and specificity of fungal amino acid transporters.

作者信息

Gournas Christos, Evangelidis Thomas, Athanasopoulos Alexandros, Mikros Emmanuel, Sophianopoulou Vicky

机构信息

From the Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, NCSR "Demokritos," Agia Paraskevi, 15310 Athens and

the School of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece.

出版信息

J Biol Chem. 2015 Mar 6;290(10):6141-55. doi: 10.1074/jbc.M114.612069. Epub 2015 Jan 8.

Abstract

Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly(56), Thr(57)), TMS3 (Glu(138)), and TMS6 (Phe(248)), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle.

摘要

真菌中的氨基酸摄取由酵母氨基酸转运蛋白(YAT)家族的一般成员和特殊成员介导,YAT家族是氨基酸多胺有机阳离子(APC)转运蛋白超家族的一个分支。PrnB是一种高度特异性的L-脯氨酸转运蛋白,只能微弱地识别其酿酒酵母同源物Put4p的其他底物。利用这两种转运蛋白之间的高度序列相似性,我们结合分子建模、诱导契合对接、遗传学和生化方法来研究这种差异的分子基础,并确定控制底物结合和特异性的残基。我们证明,L-脯氨酸通过与跨膜结构域1(TMS1)(甘氨酸(56)、苏氨酸(57))、TMS3(谷氨酸(138))和TMS6(苯丙氨酸(248))内的残基相互作用而被PrnB识别,这些残基在YAT家族中是进化保守的,而特异性是通过可变残基中的细微氨基酸取代来实现的。在TMS3(S130C)、TMS6(F252L、S253G)、TMS8(W351F)和TMS10(T414S)中进行的模仿Put4p的取代拓宽了PrnB的特异性,使其能够更有效地识别L-丙氨酸、L-氮杂环丁烷-2-羧酸和甘氨酸,而不会显著影响L-脯氨酸的表观Km值。S253G和W351F可以转运L-丙氨酸,而T414S尽管脯氨酸摄取减少,但可以转运L-丙氨酸和甘氨酸,这种表型被S130C突变所抑制。所有五个模仿Put4p的取代组合产生了一个功能性等位基因,该等位基因也可以转运L-丙氨酸和甘氨酸,其特异性谱与Put4p的特异性谱惊人地相似。我们的结果支持这样一个模型,即这些位置的残基通过与底物相互作用来决定特异性,充当门控元件,改变底物结合核心的灵活性,或影响转运循环的构象变化。

相似文献

2
Mutational analysis of the major proline transporter (PrnB) of Aspergillus nidulans.
Mol Membr Biol. 2003 Oct-Dec;20(4):285-97. doi: 10.1080/0968768031000106339.
4
Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters.
Mol Membr Biol. 2009 Aug;26(5):356-70. doi: 10.1080/09687680903170546. Epub 2009 Aug 7.

引用本文的文献

1
The Saccharomyces cerevisiae amino acid transporter Lyp1 has a broad substrate spectrum.
FEBS Lett. 2025 Jun;599(11):1609-1621. doi: 10.1002/1873-3468.70044. Epub 2025 Apr 18.
2
Research progress on the function and regulatory pathways of amino acid permeases in fungi.
World J Microbiol Biotechnol. 2024 Nov 25;40(12):392. doi: 10.1007/s11274-024-04199-1.
7
Regulation of Amino Acid Transport in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2019 Oct 16;83(4). doi: 10.1128/MMBR.00024-19. Print 2019 Nov 20.
8
Function and Regulation of Acid Resistance Antiporters.
J Membr Biol. 2019 Oct;252(4-5):465-481. doi: 10.1007/s00232-019-00073-6. Epub 2019 Jun 25.

本文引用的文献

1
Expansion of the APC superfamily of secondary carriers.
Proteins. 2014 Oct;82(10):2797-811. doi: 10.1002/prot.24643. Epub 2014 Jul 31.
4
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
5
Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.
Biochim Biophys Acta. 2014 Jul;1838(7):1719-29. doi: 10.1016/j.bbamem.2014.03.018. Epub 2014 Mar 31.
6
Converting the yeast arginine can1 permease to a lysine permease.
J Biol Chem. 2014 Mar 7;289(10):7232-7246. doi: 10.1074/jbc.M113.525915. Epub 2014 Jan 21.
8
Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11821-6. doi: 10.1073/pnas.1300558110. Epub 2013 Jul 1.
9
Structural and functional implications of the yeast high-affinity tryptophan permease Tat2.
Biochemistry. 2013 Jun 25;52(25):4296-307. doi: 10.1021/bi4004638. Epub 2013 Jun 17.
10
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验