Suppr超能文献

结肠测量仪:结肠镜检查实时质量反馈系统。

Colometer: a real-time quality feedback system for screening colonoscopy.

机构信息

Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

World J Gastroenterol. 2012 Aug 28;18(32):4270-7. doi: 10.3748/wjg.v18.i32.4270.

Abstract

AIM

To investigate the performance of a new software-based colonoscopy quality assessment system.

METHODS

The software-based system employs a novel image processing algorithm which detects the levels of image clarity, withdrawal velocity, and level of the bowel preparation in a real-time fashion from live video signal. Threshold levels of image blurriness and the withdrawal velocity below which the visualization could be considered adequate have initially been determined arbitrarily by review of sample colonoscopy videos by two experienced endoscopists. Subsequently, an overall colonoscopy quality rating was computed based on the percentage of the withdrawal time with adequate visualization (scored 1-5; 1, when the percentage was 1%-20%; 2, when the percentage was 21%-40%, etc.). In order to test the proposed velocity and blurriness thresholds, screening colonoscopy withdrawal videos from a specialized ambulatory colon cancer screening center were collected, automatically processed and rated. Quality ratings on the withdrawal were compared to the insertion in the same patients. Then, 3 experienced endoscopists reviewed the collected videos in a blinded fashion and rated the overall quality of each withdrawal (scored 1-5; 1, poor; 3, average; 5, excellent) based on 3 major aspects: image quality, colon preparation, and withdrawal velocity. The automated quality ratings were compared to the averaged endoscopist quality ratings using Spearman correlation coefficient.

RESULTS

Fourteen screening colonoscopies were assessed. Adenomatous polyps were detected in 4/14 (29%) of the collected colonoscopy video samples. As a proof of concept, the Colometer software rated colonoscope withdrawal as having better visualization than the insertion in the 10 videos which did not have any polyps (average percent time with adequate visualization: 79% ± 5% for withdrawal and 50% ± 14% for insertion, P < 0.01). Withdrawal times during which no polyps were removed ranged from 4-12 min. The median quality rating from the automated system and the reviewers was 3.45 [interquartile range (IQR), 3.1-3.68] and 3.00 (IQR, 2.33-3.67) respectively for all colonoscopy video samples. The automated rating revealed a strong correlation with the reviewer's rating (ρ coefficient= 0.65, P = 0.01). There was good correlation of the automated overall quality rating and the mean endoscopist withdrawal speed rating (Spearman r coefficient= 0.59, P = 0.03). There was no correlation of automated overall quality rating with mean endoscopists image quality rating (Spearman r coefficient= 0.41, P = 0.15).

CONCLUSION

The results from a novel automated real-time colonoscopy quality feedback system strongly agreed with the endoscopists' quality assessments. Further study is required to validate this approach.

摘要

目的

研究一种新的基于软件的结肠镜质量评估系统的性能。

方法

该基于软件的系统采用了一种新颖的图像处理算法,可实时从实时视频信号中检测图像清晰度、退出速度和肠道准备水平。图像模糊和退出速度的阈值最初是通过两位经验丰富的内镜医生审查样本结肠镜视频任意确定的。随后,根据有足够可视化的退出时间百分比(评分 1-5;1 时百分比为 1%-20%;2 时百分比为 21%-40%,依此类推)计算总体结肠镜质量评分。为了测试建议的速度和模糊阈值,从专门的门诊结肠癌筛查中心收集了筛查结肠镜退出视频,进行自动处理和评分。将退出质量评分与同一患者的插入进行比较。然后,3 位经验丰富的内镜医生以盲法方式查看收集的视频,并根据 3 个主要方面(图像质量、肠道准备和退出速度)对每个退出的整体质量(评分 1-5;1 为差;3 为平均;5 为优秀)进行评分。使用 Spearman 相关系数比较自动质量评分和平均内镜医生质量评分。

结果

评估了 14 例筛查性结肠镜检查。在收集的结肠镜视频样本中,4/14(29%)发现了腺瘤性息肉。作为概念验证,Colometer 软件对结肠镜退出的评估显示,在没有任何息肉的 10 个视频中,可视化效果更好(平均有足够可视化的时间百分比:退出时为 79%±5%,插入时为 50%±14%,P<0.01)。未切除息肉的退出时间为 4-12 分钟。自动系统和审查者的中位数质量评分分别为 3.45(四分位距,3.1-3.68)和 3.00(四分位距,2.33-3.67),用于所有结肠镜视频样本。自动评分与审查者的评分具有很强的相关性(ρ系数=0.65,P=0.01)。自动整体质量评分与内镜医生平均退出速度评分呈良好相关性(Spearman r 系数=0.59,P=0.03)。自动整体质量评分与内镜医生的图像质量评分无相关性(Spearman r 系数=0.41,P=0.15)。

结论

一种新的基于软件的实时结肠镜质量反馈系统的结果与内镜医生的质量评估高度一致。需要进一步研究来验证这种方法。

相似文献

1
Colometer: a real-time quality feedback system for screening colonoscopy.
World J Gastroenterol. 2012 Aug 28;18(32):4270-7. doi: 10.3748/wjg.v18.i32.4270.
2
Quality colonoscopy: a matter of time, technique or technology?
World J Gastroenterol. 2013 Mar 14;19(10):1517-22. doi: 10.3748/wjg.v19.i10.1517.
3
Colonoscopic withdrawal times and adenoma detection during screening colonoscopy.
N Engl J Med. 2006 Dec 14;355(24):2533-41. doi: 10.1056/NEJMoa055498.
4
High-definition colonoscopy with i-Scan: better diagnosis for small polyps and flat adenomas.
World J Gastroenterol. 2012 Oct 7;18(37):5231-9. doi: 10.3748/wjg.v18.i37.5231.
5
Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy.
Gastroenterology. 2018 Oct;155(4):1069-1078.e8. doi: 10.1053/j.gastro.2018.06.037. Epub 2018 Jun 18.
6
Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study.
Gastroenterology. 2020 Oct;159(4):1252-1261.e5. doi: 10.1053/j.gastro.2020.06.023. Epub 2020 Jun 17.
7
Optical diagnosis of colorectal polyps using high-definition i-scan: an educational experience.
World J Gastroenterol. 2013 Jul 21;19(27):4334-43. doi: 10.3748/wjg.v19.i27.4334.
8
Automated polyp detection in the colorectum: a prospective study (with videos).
Gastrointest Endosc. 2019 Mar;89(3):576-582.e1. doi: 10.1016/j.gie.2018.09.042. Epub 2018 Oct 17.
9
Impact of endoscopist withdrawal speed on polyp yield: implications for optimal colonoscopy withdrawal time.
Aliment Pharmacol Ther. 2006 Sep 15;24(6):965-71. doi: 10.1111/j.1365-2036.2006.03080.x.
10
Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.
Nat Biomed Eng. 2018 Oct;2(10):741-748. doi: 10.1038/s41551-018-0301-3. Epub 2018 Oct 10.

引用本文的文献

2
Artificial intelligence-assisted colonoscopy: A review of current state of practice and research.
World J Gastroenterol. 2021 Dec 21;27(47):8103-8122. doi: 10.3748/wjg.v27.i47.8103.
3
Use of Artificial Intelligence to Improve the Quality Control of Gastrointestinal Endoscopy.
Front Med (Lausanne). 2021 Jul 22;8:709347. doi: 10.3389/fmed.2021.709347. eCollection 2021.
4
Automated visibility map of the internal colon surface from colonoscopy video.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1599-610. doi: 10.1007/s11548-016-1462-8. Epub 2016 Aug 4.
5
Interval Colorectal Cancer After Colonoscopy: Exploring Explanations and Solutions.
Am J Gastroenterol. 2015 Dec;110(12):1657-64; quiz 1665. doi: 10.1038/ajg.2015.365. Epub 2015 Nov 10.
6
A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time.
Appl Clin Inform. 2015 Jun 3;6(2):364-74. doi: 10.4338/ACI-2014-10-RA-0088. eCollection 2015.
7
Simulation-based training for colonoscopy: establishing criteria for competency.
Medicine (Baltimore). 2015 Jan;94(4):e440. doi: 10.1097/MD.0000000000000440.
8
Quality colonoscopy: a matter of time, technique or technology?
World J Gastroenterol. 2013 Mar 14;19(10):1517-22. doi: 10.3748/wjg.v19.i10.1517.

本文引用的文献

2
Colonoscopy quality measures: experience from the NHS Bowel Cancer Screening Programme.
Gut. 2012 Jul;61(7):1050-7. doi: 10.1136/gutjnl-2011-300651. Epub 2011 Sep 22.
3
Magnesium citrate with a single dose of sodium phosphate for colonoscopy bowel preparation.
World J Gastroenterol. 2011 Jan 14;17(2):242-8. doi: 10.3748/wjg.v17.i2.242.
4
Update on preparation for colonoscopy.
Curr Gastroenterol Rep. 2010 Oct;12(5):366-73. doi: 10.1007/s11894-010-0121-4.
5
Cancer statistics, 2010.
CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7.
6
Improving colonoscopy quality through health-care payment reform.
Am J Gastroenterol. 2010 Sep;105(9):1925-33. doi: 10.1038/ajg.2010.247. Epub 2010 Jun 15.
7
Withdrawal times and associated factors in colonoscopy: a quality assurance multicenter assessment.
J Clin Gastroenterol. 2010 Apr;44(4):e80-6. doi: 10.1097/MCG.0b013e3181bf9b02.
8
Making every colonoscopy count: Ensuring quality in endoscopy.
J Gastroenterol Hepatol. 2009 Oct;24 Suppl 3:S43-50. doi: 10.1111/j.1440-1746.2009.06070.x.
9
Clinical practice. Screening for colorectal cancer.
N Engl J Med. 2009 Sep 17;361(12):1179-87. doi: 10.1056/NEJMcp0902176.
10
Colorectal cancer screening by primary care physicians: recommendations and practices, 2006-2007.
Am J Prev Med. 2009 Jul;37(1):8-16. doi: 10.1016/j.amepre.2009.03.008. Epub 2009 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验