Suppr超能文献

基于神经网络的肝脏肿瘤超声造影参数诊断

Contrast-enhanced ultrasonography parameters in neural network diagnosis of liver tumors.

机构信息

Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.

出版信息

World J Gastroenterol. 2012 Aug 28;18(32):4427-34. doi: 10.3748/wjg.v18.i32.4427.

Abstract

AIM

To study the role of time-intensity curve (TIC) analysis parameters in a complex system of neural networks designed to classify liver tumors.

METHODS

We prospectively included 112 patients with hepatocellular carcinoma (HCC) (n = 41), hypervascular (n = 20) and hypovascular (n = 12) liver metastases, hepatic hemangiomas (n = 16) or focal fatty changes (n = 23) who underwent contrast-enhanced ultrasonography in the Research Center of Gastroenterology and Hepatology, Craiova, Romania. We recorded full length movies of all contrast uptake phases and post-processed them offline by selecting two areas of interest (one for the tumor and one for the healthy surrounding parenchyma) and consecutive TIC analysis. The difference in maximum intensities, the time to reaching them and the aspect of the late/portal phase, as quantified by the neural network and a ratio between median intensities of the central and peripheral areas were analyzed by a feed forward back propagation multi-layer neural network which was trained to classify data into five distinct classes, corresponding to each type of liver lesion.

RESULTS

The neural network had 94.45% training accuracy (95% CI: 89.31%-97.21%) and 87.12% testing accuracy (95% CI: 86.83%-93.17%). The automatic classification process registered 93.2% sensitivity, 89.7% specificity, 94.42% positive predictive value and 87.57% negative predictive value. The artificial neural networks (ANN) incorrectly classified as hemangyomas three HCC cases and two hypervascular metastases, while in turn misclassifying four liver hemangyomas as HCC (one case) and hypervascular metastases (three cases). Comparatively, human interpretation of TICs showed 94.1% sensitivity, 90.7% specificity, 95.11% positive predictive value and 88.89% negative predictive value. The accuracy and specificity of the ANN diagnosis system was similar to that of human interpretation of the TICs (P = 0.225 and P = 0.451, respectively). Hepatocellular carcinoma cases showed contrast uptake during the arterial phase followed by wash-out in the portal and first seconds of the late phases. For the hypovascular metastases did not show significant contrast uptake during the arterial phase, which resulted in negative differences between the maximum intensities. We registered wash-out in the late phase for most of the hypervascular metastases. Liver hemangiomas had contrast uptake in the arterial phase without agent wash-out in the portal-late phases. The focal fatty changes did not show any differences from surrounding liver parenchyma, resulting in similar TIC patterns and extracted parameters.

CONCLUSION

Neural network analysis of contrast-enhanced ultrasonography - obtained TICs seems a promising field of development for future techniques, providing fast and reliable diagnostic aid for the clinician.

摘要

目的

研究时间-强度曲线(TIC)分析参数在设计用于分类肝肿瘤的复杂神经网络系统中的作用。

方法

我们前瞻性纳入了 112 名罗马尼亚克卢日纳波卡胃肠病学和肝病学研究中心行对比增强超声检查的肝细胞癌(HCC)(n=41)、富血供(n=20)和乏血供(n=12)肝转移瘤、肝血管瘤(n=16)或局灶性脂肪变性(n=23)患者。我们记录了所有对比剂摄取相的全长电影,并通过选择两个感兴趣区(一个用于肿瘤,一个用于健康周围实质)和连续 TIC 分析离线处理它们。通过前馈反向传播多层神经网络分析最大强度差异、达到最大强度的时间以及门静脉晚期相的特征,该神经网络经过训练可将数据分类为五个不同类别,对应于每种肝病变类型。

结果

神经网络的训练准确率为 94.45%(95%CI:89.31%-97.21%),测试准确率为 87.12%(95%CI:86.83%-93.17%)。自动分类过程的灵敏度为 93.2%,特异性为 89.7%,阳性预测值为 94.42%,阴性预测值为 87.57%。人工神经网络(ANN)错误地将 3 例 HCC 和 2 例富血供转移瘤分类为肝血管瘤,而反过来又将 4 例肝血管瘤错误分类为 HCC(1 例)和富血供转移瘤(3 例)。相比之下,TIC 的人工解读显示出 94.1%的灵敏度、90.7%的特异性、95.11%的阳性预测值和 88.89%的阴性预测值。ANN 诊断系统的准确性和特异性与 TIC 人工解读相似(P=0.225 和 P=0.451)。HCC 病例在动脉期显示对比剂摄取,随后在门静脉期和晚期的前几秒出现洗脱。乏血供转移瘤在动脉期无明显对比剂摄取,导致最大强度之间出现负差异。我们在大多数富血供转移瘤中记录到晚期的洗脱。肝血管瘤在动脉期摄取造影剂,门静脉-晚期无造影剂洗脱。局灶性脂肪变性与周围肝实质无差异,导致 TIC 模式和提取参数相似。

结论

基于对比增强超声获得的 TIC 的神经网络分析似乎是未来技术有前途的发展领域,可为临床医生提供快速可靠的诊断辅助。

相似文献

5
Quantitative dynamic contrast-enhanced sonography of hepatic tumors.肝脏肿瘤的定量动态对比增强超声检查
Eur Radiol. 2004 Jun;14(6):1082-91. doi: 10.1007/s00330-004-2299-z. Epub 2004 Apr 24.

引用本文的文献

1
Application of artificial intelligence in the diagnosis of hepatocellular carcinoma.人工智能在肝细胞癌诊断中的应用。
eGastroenterology. 2023 Nov 30;1(2):e100002. doi: 10.1136/egastro-2023-100002. eCollection 2023 Sep.
3
Artificial intelligence techniques in liver cancer.肝癌中的人工智能技术
Front Oncol. 2024 Sep 3;14:1415859. doi: 10.3389/fonc.2024.1415859. eCollection 2024.

本文引用的文献

2
Hepatocellular carcinoma.肝细胞癌
N Engl J Med. 2011 Sep 22;365(12):1118-27. doi: 10.1056/NEJMra1001683.
4
Management of hepatocellular carcinoma: an update.肝细胞癌的管理:最新进展
Hepatology. 2011 Mar;53(3):1020-2. doi: 10.1002/hep.24199.
7
Medical image analysis with artificial neural networks.基于人工神经网络的医学影像分析。
Comput Med Imaging Graph. 2010 Dec;34(8):617-31. doi: 10.1016/j.compmedimag.2010.07.003. Epub 2010 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验