Suppr超能文献

基于知识的复杂疾病关联研究方法。

A knowledge-based method for association studies on complex diseases.

机构信息

Department of Molecular Genetics and Microbiology and UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America.

出版信息

PLoS One. 2012;7(9):e44162. doi: 10.1371/journal.pone.0044162. Epub 2012 Sep 6.

Abstract

Complex disorders are a class of diseases whose phenotypic variance is caused by the interplay of multiple genetic and environmental factors. Analyzing the complexity underlying the genetic architecture of such traits may help develop more efficient diagnostic tests and therapeutic protocols. Despite the continuous advances in revealing the genetic basis of many of complex diseases using genome-wide association studies (GWAS), a major proportion of their genetic variance has remained unexplained, in part because GWAS are unable to reliably detect small individual risk contributions and to capture the underlying genetic heterogeneity. In this paper we describe a hypothesis-based method to analyze the association between multiple genetic factors and a complex phenotype. Starting from sets of markers selected based on preexisting biomedical knowledge, our method generates multi-marker models relevant to the biological process underlying a complex trait for which genotype data is available. We tested the applicability of our method using the WTCCC case-control dataset. Analyzing a number of biological pathways, the method was able to identify several immune system related multi-SNP models significantly associated with Rheumatoid Arthritis (RA) and Crohn's disease (CD). RA-associated multi-SNP models were also replicated in an independent case-control dataset. The method we present provides a framework for capturing joint contributions of genetic factors to complex traits. In contrast to hypothesis-free approaches, its results can be given a direct biological interpretation. The replicated multi-SNP models generated by our analysis may serve as a predictor to estimate the risk of RA development in individuals of Caucasian ancestry.

摘要

复杂疾病是一类疾病,其表型变异是由多个遗传和环境因素相互作用引起的。分析这些特征遗传结构背后的复杂性可能有助于开发更有效的诊断测试和治疗方案。尽管使用全基因组关联研究(GWAS)不断揭示许多复杂疾病的遗传基础,但它们的遗传变异仍有很大一部分尚未得到解释,部分原因是 GWAS 无法可靠地检测到个体风险的微小贡献,也无法捕捉到潜在的遗传异质性。在本文中,我们描述了一种基于假设的方法来分析多个遗传因素与复杂表型之间的关联。我们的方法从基于预先存在的生物医学知识选择的标记物集开始,为具有基因型数据的复杂特征生成与生物学过程相关的多标记物模型。我们使用 WTCCC 病例对照数据集测试了我们方法的适用性。通过分析许多生物途径,该方法能够识别出与类风湿关节炎(RA)和克罗恩病(CD)显著相关的几个免疫系统相关的多 SNP 模型。RA 相关的多 SNP 模型也在独立的病例对照数据集中得到了复制。我们提出的方法为捕捉遗传因素对复杂特征的联合贡献提供了一个框架。与无假设方法相比,其结果可以给出直接的生物学解释。我们分析生成的复制多 SNP 模型可以作为预测指标,用于估计白种人个体患 RA 的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49cb/3435396/e8bc74eccabc/pone.0044162.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验