Suppr超能文献

分枝杆菌中的细胞分裂位点定位和不对称生长。

Cell division site placement and asymmetric growth in mycobacteria.

机构信息

MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London, United Kingdom.

出版信息

PLoS One. 2012;7(9):e44582. doi: 10.1371/journal.pone.0044582. Epub 2012 Sep 10.

Abstract

Mycobacteria are members of the actinomycetes that grow by tip extension and lack apparent homologues of the known cell division regulators found in other rod-shaped bacteria. Previous work using static microscopy on dividing mycobacteria led to the hypothesis that these cells can grow and divide asymmetrically, and at a wide range of sizes, in contrast to the cell growth and division patterns observed in the model rod-shaped organisms. In this study, we test this hypothesis using live-cell time-lapse imaging of dividing Mycobacterium smegmatis labelled with fluorescent PBP1a, to probe peptidoglycan synthesis and label the cell septum. We demonstrate that the new septum is placed accurately at mid-cell, and that the asymmetric division observed is a result of differential growth from the cell tips, with a more than 2-fold difference in growth rate between fast and slow growing poles. We also show that the division site is not selected at a characteristic cell length, suggesting this is not an important cue during the mycobacterial cell cycle.

摘要

分枝杆菌是放线菌的成员,通过尖端延伸生长,缺乏与其他杆状细菌中已知细胞分裂调节剂明显同源的物质。以前使用静态显微镜对正在分裂的分枝杆菌进行的研究提出了这样的假设,即这些细胞可以不对称地生长和分裂,并且可以在很宽的范围内生长,这与在模型杆状生物中观察到的细胞生长和分裂模式形成对比。在这项研究中,我们使用荧光标记的 PBP1a 对标记的分枝杆菌进行活细胞延时成像,以探测肽聚糖的合成并标记细胞隔膜,从而验证了这一假设。我们证明新的隔膜准确地位于细胞中部,并且观察到的不对称分裂是细胞尖端的差异生长的结果,快速生长的极和缓慢生长的极之间的生长速率差异超过 2 倍。我们还表明,分裂位点不是在特征细胞长度处选择的,这表明这不是分枝杆菌细胞周期中的重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2923/3438161/160fa40c4996/pone.0044582.g001.jpg

相似文献

1
Cell division site placement and asymmetric growth in mycobacteria.
PLoS One. 2012;7(9):e44582. doi: 10.1371/journal.pone.0044582. Epub 2012 Sep 10.
2
Unusual features of the cell cycle in mycobacteria: polar-restricted growth and the snapping-model of cell division.
Tuberculosis (Edinb). 2007 May;87(3):231-6. doi: 10.1016/j.tube.2006.10.004. Epub 2007 Feb 6.
3
Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria.
PLoS Pathog. 2015 Jun 26;11(6):e1005010. doi: 10.1371/journal.ppat.1005010. eCollection 2015 Jun.
5
Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa.
Mol Microbiol. 2013 Apr;88(1):64-76. doi: 10.1111/mmi.12169. Epub 2013 Mar 6.
6
Insights into the function of FhaA, a cell division-associated protein in mycobacteria.
FEMS Microbiol Lett. 2017 Jan 1;364(2). doi: 10.1093/femsle/fnw294.
7
Cell Wall Damage Reveals Spatial Flexibility in Peptidoglycan Synthesis and a Nonredundant Role for RodA in Mycobacteria.
J Bacteriol. 2022 Jun 21;204(6):e0054021. doi: 10.1128/jb.00540-21. Epub 2022 May 11.
8
Asymmetric cell division in Mycobacterium tuberculosis and its unique features.
Arch Microbiol. 2014 Mar;196(3):157-68. doi: 10.1007/s00203-014-0953-7. Epub 2014 Jan 31.
9
Temporal and intrinsic factors of rifampicin tolerance in mycobacteria.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8302-7. doi: 10.1073/pnas.1600372113. Epub 2016 Jun 29.
10
Characterization of Conserved and Novel Septal Factors in Mycobacterium smegmatis.
J Bacteriol. 2018 Feb 23;200(6). doi: 10.1128/JB.00649-17. Print 2018 Mar 15.

引用本文的文献

1
FhaA plays a key role in mycobacterial polar elongation and asymmetric growth.
mBio. 2025 Mar 12;16(3):e0252624. doi: 10.1128/mbio.02526-24. Epub 2025 Jan 21.
5
Ethambutol and meropenem/clavulanate synergy promotes enhanced extracellular and intracellular killing of .
Antimicrob Agents Chemother. 2024 Apr 3;68(4):e0158623. doi: 10.1128/aac.01586-23. Epub 2024 Feb 27.
7
A cell wall synthase accelerates plasma membrane partitioning in mycobacteria.
Elife. 2023 Sep 4;12:e81924. doi: 10.7554/eLife.81924.
8
Septum site placement in - identification and characterisation of mycobacterial homologues of MinD.
Microbiology (Reading). 2023 Aug;169(8). doi: 10.1099/mic.0.001359.
9
Chemical approaches to unraveling the biology of mycobacteria.
Cell Chem Biol. 2023 May 18;30(5):420-435. doi: 10.1016/j.chembiol.2023.04.014.
10
Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum.
Front Microbiol. 2023 Jan 12;13:1085918. doi: 10.3389/fmicb.2022.1085918. eCollection 2022.

本文引用的文献

1
Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility.
Science. 2012 Jan 6;335(6064):100-4. doi: 10.1126/science.1216166. Epub 2011 Dec 15.
2
Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.
Science. 2011 Jul 8;333(6039):222-5. doi: 10.1126/science.1203285. Epub 2011 Jun 2.
3
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Science. 2011 Jul 8;333(6039):225-8. doi: 10.1126/science.1203466. Epub 2011 Jun 2.
4
Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes.
J Bacteriol. 2011 Jul;193(13):3246-56. doi: 10.1128/JB.00188-11. Epub 2011 Apr 29.
6
A modified agar pad method for mycobacterial live-cell imaging.
BMC Res Notes. 2011 Mar 21;4:73. doi: 10.1186/1756-0500-4-73.
7
Bacterial shape: two-dimensional questions and possibilities.
Annu Rev Microbiol. 2010;64:223-40. doi: 10.1146/annurev.micro.112408.134102.
8
Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria.
PLoS Pathog. 2010 Jul 29;6(7):e1001020. doi: 10.1371/journal.ppat.1001020.
9
Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly.
PLoS One. 2010 Jul 6;5(7):e11058. doi: 10.1371/journal.pone.0011058.
10
Growth, cell division and sporulation in mycobacteria.
Antonie Van Leeuwenhoek. 2010 Aug;98(2):165-77. doi: 10.1007/s10482-010-9446-0. Epub 2010 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验