Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA.
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA.
J Bacteriol. 2022 Jun 21;204(6):e0054021. doi: 10.1128/jb.00540-21. Epub 2022 May 11.
Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacterium from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA, and a cognate class B penicillin-binding protein (PBP), and the class A PBPs (aPBPs). In contrast to laterally growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for growth. However, RodA contributes to the survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps that of the aPBP PonA1 and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies Mycobacterium smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover, the vast majority of bacterial species are unlikely to fit a single paradigm of cell wall assembly because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under nonoptimal conditions and in nonstandard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multilayered envelope. In this work, we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack.
细胞壁肽聚糖是一种杂多聚合物网格,可保护细菌免受内部膨压和外部伤害。在许多杆状细菌中,正常生长的肽聚糖合成是通过两条不同的途径实现的:Rod 复合物,由 MreB、RodA 和同源的 B 类青霉素结合蛋白(PBP)组成,以及 A 类 PBP(aPBP)。与侧向生长的细菌不同,杆状生长的分枝杆菌不编码 MreB 同源物,也不需要 SEDS 蛋白 RodA 进行生长。然而,RodA 在某些感染模型中有助于结核分枝杆菌的存活,这表明该蛋白可能在维持细胞壁完整性方面具有应激依赖性作用。在基础条件下,我们在这里发现 RodA 的亚细胞分布在很大程度上与 aPBP PonA1 重叠,并且 RodA 和 aPBPs 都促进了极性肽聚糖的组装。在细胞壁受损时,RodA 增强了耻垢分枝杆菌对裂解的抵抗力,与 aPBPs 不同,它有助于肽聚糖组装从极转移到底壁。RodA 和 PonA1 都没有重新定位;相反,新生细胞壁的重新分配与肽聚糖前体合成酶 MurG 平行。我们的结果支持这样一种模型,即分枝杆菌通过前体合成和细胞外插入的空间灵活性来平衡极性生长和全细胞修复。肽聚糖合成是抗生素的一个非常成功的靶点。该途径已在实验室优化条件下的模型生物中进行了广泛研究。在自然环境中,细菌经常受到攻击。此外,由于生长模式和/或包膜结构的差异,绝大多数细菌物种不太可能符合单一的细胞壁组装范式。在非最佳条件下和非标准物种中研究细胞壁合成可能会提高我们对途径功能的理解,并提出新的抑制策略。耻垢分枝杆菌是几种臭名昭著的人类和动物病原体的近亲,具有不寻常的极性生长模式和多层包膜。在这项工作中,我们用细胞壁破坏酶挑战耻垢分枝杆菌,以表征当细菌受到攻击时细胞壁构建酶的作用。