LUNAM Université, Oniris, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, F-44307, France.
Analyst. 2012 Nov 7;137(21):4958-67. doi: 10.1039/c2an35865d. Epub 2012 Sep 12.
Metabolomics aims at detecting and semi-quantifying small molecular weight metabolites in biological samples in order to characterise the metabolic changes resulting from one or more given factors and/or to develop models based on diagnostic biomarker candidates. Nevertheless, whatever the objective of a metabolomic study, one critical step consists in the structural identification of mass spectrometric features revealed by statistical analysis and this remains a real challenge. Indeed, this requires both an understanding of the studied biological system, the correct use of various analytical information (retention time, molecular weight experimentally measured, isotopic golden rules, MS/MS fragment pattern interpretation…), or querying online databases. In gas chromatography-electro-ionisation (EI)-mass spectrometry, EI leads to a very reproducible fragmentation allowing establishment of universal EI mass spectra databases (for example, the NIST database -National Institute of Standards and Technology) and thus facilitates the identification step. Unfortunately, the situation is different when working with liquid chromatography-mass spectrometry (LC-MS) since atmospheric pressure ionisation exhibits high inter-instrument variability regarding fragmentation. Therefore, the constitution of LC-MS "in-house" spectral databases appears relevant in this context. The present study describes the procedure developed and applied to increment 133 and 130 metabolites in databanks dedicated to analyses performed with LC-HRMS in positive and negative electrospray ionisation, and the use of these databanks for annotating quickly untargeted metabolomics fingerprints. This study also describes the optimization of the parameters controlling the automatic processing in order to obtain a fast and reliable annotation of a maximum of organic compounds. This strategy was applied to bovine kidney samples collected from control animals or animals treated with steroid hormones. Thirty-eight compounds were identified successfully in the generated chemical phenotypes, among which five were found to be candidate markers of the administration of these anabolic agents, demonstrating the efficiency of the developed strategy to reveal and confirm metabolite structures according to the high-throughput objective expected from these integrative biological approaches.
代谢组学旨在检测和半定量生物样本中小分子量代谢物,以描述一个或多个给定因素引起的代谢变化,或基于诊断生物标志物候选物开发模型。然而,无论代谢组学研究的目的是什么,一个关键步骤都包括通过统计分析揭示的质谱特征的结构鉴定,这仍然是一个真正的挑战。事实上,这既需要对研究的生物系统有深入的了解,又需要正确使用各种分析信息(保留时间、实验测量的分子量、同位素黄金规则、MS/MS 片段模式解释等),或者查询在线数据库。在气相色谱-电离子化(EI)-质谱中,EI 导致非常可重复的碎片化,从而建立通用 EI 质谱数据库(例如,NIST 数据库-国家标准与技术研究所),从而简化了鉴定步骤。不幸的是,当使用液相色谱-质谱(LC-MS)时情况则不同,因为大气压电离在碎片化方面具有很高的仪器间可变性。因此,在这种情况下,建立 LC-MS“内部”光谱数据库是很有意义的。本研究描述了为在正电喷雾和负电喷雾离子化下进行的 LC-HRMS 分析而专门开发和应用于数据库中的 133 和 130 种代谢物的增量的程序,以及使用这些数据库快速注释非靶向代谢组学指纹图谱。本研究还描述了优化控制自动处理的参数的过程,以便对尽可能多的有机化合物进行快速可靠的注释。该策略应用于从对照动物或用类固醇激素处理的动物采集的牛肾样本。在生成的化学表型中成功鉴定了 38 种化合物,其中 5 种被认为是这些合成代谢剂给药的候选标志物,证明了所开发的策略在根据这些综合生物学方法预期的高通量目标揭示和确认代谢物结构方面的效率。