Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
PLoS Comput Biol. 2013;9(8):e1003191. doi: 10.1371/journal.pcbi.1003191. Epub 2013 Aug 29.
Extensive electrophysiology studies have shown that many V1 simple cells have nonlinear response properties to stimuli within their classical receptive field (CRF) and receive contextual influence from stimuli outside the CRF modulating the cell's response. Models seeking to explain these non-classical receptive field (nCRF) effects in terms of circuit mechanisms, input-output descriptions, or individual visual tasks provide limited insight into the functional significance of these response properties, because they do not connect the full range of nCRF effects to optimal sensory coding strategies. The (population) sparse coding hypothesis conjectures an optimal sensory coding approach where a neural population uses as few active units as possible to represent a stimulus. We demonstrate that a wide variety of nCRF effects are emergent properties of a single sparse coding model implemented in a neurally plausible network structure (requiring no parameter tuning to produce different effects). Specifically, we replicate a wide variety of nCRF electrophysiology experiments (e.g., end-stopping, surround suppression, contrast invariance of orientation tuning, cross-orientation suppression, etc.) on a dynamical system implementing sparse coding, showing that this model produces individual units that reproduce the canonical nCRF effects. Furthermore, when the population diversity of an nCRF effect has also been reported in the literature, we show that this model produces many of the same population characteristics. These results show that the sparse coding hypothesis, when coupled with a biophysically plausible implementation, can provide a unified high-level functional interpretation to many response properties that have generally been viewed through distinct mechanistic or phenomenological models.
广泛的电生理学研究表明,许多 V1 简单细胞对其经典感受野 (CRF) 内的刺激具有非线性反应特性,并受到来自 CRF 外刺激的上下文影响,从而调节细胞的反应。试图用电路机制、输入-输出描述或单个视觉任务来解释这些非经典感受野 (nCRF) 效应的模型,对这些反应特性的功能意义提供的见解有限,因为它们没有将 nCRF 效应的全部范围与最佳感觉编码策略联系起来。(群体)稀疏编码假说推测了一种最佳的感觉编码方法,即神经元群体使用尽可能少的活动单元来表示刺激。我们证明,各种 nCRF 效应都是在一个神经上合理的网络结构中实现的单个稀疏编码模型的涌现特性(无需参数调整即可产生不同的效果)。具体来说,我们在实现稀疏编码的动态系统上复制了各种 nCRF 电生理学实验(例如,末端停止、环绕抑制、朝向调谐的对比度不变性、交叉朝向抑制等),表明该模型产生的单个单元再现了典型的 nCRF 效应。此外,当文献中也报道了 nCRF 效应的群体多样性时,我们表明该模型产生了许多相同的群体特征。这些结果表明,当稀疏编码假说与生物物理上合理的实现相结合时,它可以为许多通常通过不同的机制或现象学模型来看待的反应特性提供一个统一的高级功能解释。