Suppr超能文献

[在检验医学观察性研究中使用协方差分析或倾向得分法对析因效应进行无偏估计]

[Unbiased estimation of factorial effect by using analysis of covariance or propensity score method for observational studies in laboratory medicine].

作者信息

Inada Masanori

机构信息

Department of Clinical Laboratory, Toranomon Hospital, Minato-ku, Tokyo 105-8470, Japan.

出版信息

Rinsho Byori. 2012 Jul;60(7):689-97.

Abstract

This paper deals with bias-reduction techniques for observational studies in evidence-based laboratory medicine (EBLM). In the field of laboratory medicine, many observational studies have been performed since it is difficult to design randomized experimental studies. The results of these observational studies have usually been affected by various types of biases in observational data that could not be controlled by the researchers. In randomized experiments, random assignment provides unbiased estimations of the treatment effect. In contrast, in observational studies, incorrect (biased) estimations arise from the imbalance between the covariates for the treatment/exposure group and the control group; therefore, information regarding confounding factors that affect both an outcome variable and assignment should be used to construct a multivariate model for minimizing bias. Covariate adjustment helps to reduce bias by correcting the imbalance in covariates. Analysis of covariance (ANCOVA) is an important method for covariate adjustment. The ANCOVA model is an extension of multiple regression models that can statistically control the effects of covariates. The propensity score method has recently been used as a covariate adjustment method in applied research. Because propensity scores concentrate the information on covariates, conditional expectations can be easily computed. In this paper, both methods were exemplified in a study on sex-based differences in HDL cholesterol levels. Similar unbiased estimates of sex-based differences were obtained using both methods, as opposed to an incorrect estimate obtained using univariate analysis. The results emphasize that covariate adjustment should be used to obtain credible evidence in observational studies.

摘要

本文探讨循证检验医学(EBLM)中观察性研究的偏差减少技术。在检验医学领域,由于难以设计随机实验研究,已经开展了许多观察性研究。这些观察性研究的结果通常受到观察数据中各种偏差的影响,而研究人员无法控制这些偏差。在随机实验中,随机分配可提供对治疗效果的无偏估计。相比之下,在观察性研究中,治疗/暴露组与对照组协变量之间的不平衡会导致不正确(有偏差)的估计;因此,应使用有关影响结果变量和分配的混杂因素的信息来构建多变量模型,以尽量减少偏差。协变量调整有助于通过纠正协变量的不平衡来减少偏差。协方差分析(ANCOVA)是协变量调整的一种重要方法。ANCOVA模型是多元回归模型的扩展,它可以在统计上控制协变量的影响。倾向评分法最近在应用研究中被用作协变量调整方法。由于倾向评分集中了协变量的信息,因此可以轻松计算条件期望。在本文中,这两种方法都在一项关于高密度脂蛋白胆固醇水平性别差异的研究中得到了例证。与使用单变量分析得到的错误估计相反,使用这两种方法都获得了关于性别差异的类似无偏估计。结果强调,在观察性研究中应使用协变量调整来获得可靠的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验