Otto-Friedrich-Universität Bamberg, Germany.
University of Wisconsin-Madison, Wisconsin, USA.
Br J Math Stat Psychol. 2019 May;72(2):244-270. doi: 10.1111/bmsp.12146. Epub 2018 Oct 21.
The average causal treatment effect (ATE) can be estimated from observational data based on covariate adjustment. Even if all confounding covariates are observed, they might not necessarily be reliably measured and may fail to obtain an unbiased ATE estimate. Instead of fallible covariates, the respective latent covariates can be used for covariate adjustment. But is it always necessary to use latent covariates? How well do analysis of covariance (ANCOVA) or propensity score (PS) methods estimate the ATE when latent covariates are used? We first analytically delineate the conditions under which latent instead of fallible covariates are necessary to obtain the ATE. Then we empirically examine the difference between ATE estimates when adjusting for fallible or latent covariates in an applied example. We discuss the issue of fallible covariates within a stochastic theory of causal effects and analyse data of a within-study comparison with recently developed ANCOVA and PS procedures that allow for latent covariates. We show that fallible covariates do not necessarily bias ATE estimates, but point out different scenarios in which adjusting for latent covariates is required. In our empirical application, we demonstrate how latent covariates can be incorporated for ATE estimation in ANCOVA and in PS analysis.
平均因果处理效应 (ATE) 可以基于协变量调整从观察性数据中估计。即使所有混杂协变量都被观察到,它们也可能无法可靠地测量,并且可能无法获得无偏的 ATE 估计。与其使用不可靠的协变量,不如使用相应的潜在协变量进行协变量调整。但是,是否总是需要使用潜在协变量呢?当使用潜在协变量时,协方差分析 (ANCOVA) 或倾向评分 (PS) 方法对 ATE 的估计效果如何?我们首先分析性地确定了需要使用潜在而非不可靠的协变量才能获得 ATE 的条件。然后,我们在一个应用示例中实证检验了在调整不可靠或潜在协变量时 ATE 估计值的差异。我们在因果效应的随机理论中讨论了不可靠协变量的问题,并分析了使用最近开发的允许使用潜在协变量的 ANCOVA 和 PS 程序进行的一项研究内比较的数据。我们表明,不可靠的协变量不一定会使 ATE 估计值产生偏差,但指出了需要调整潜在协变量的不同情况。在我们的实证应用中,我们展示了如何在 ANCOVA 和 PS 分析中纳入潜在协变量进行 ATE 估计。