Suppr超能文献

作为 pH 缓冲剂和电子受体的重碳酸盐在氯代烯烃微生物脱氯中的作用。

Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes.

机构信息

Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, PO Box 875001, Tempe, AZ 85287-5701, USA.

出版信息

Microb Cell Fact. 2012 Sep 13;11:128. doi: 10.1186/1475-2859-11-128.

Abstract

BACKGROUND

Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3-) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3- also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3- as a buffering agent and the effect of HCO3--consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens.

RESULTS

Rate differences in TCE dechlorination were observed as a result of added varying HCO3- concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3- consumption. Significantly faster dechlorination rates were noted at all HCO3- concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3- concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3- were provided initially.

CONCLUSIONS

Our study reveals that HCO3- is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3- and the changes in pH exerted by methanogens and homoacetogens.

摘要

背景

缓冲作用对于成功进行三氯乙烯(TCE)厌氧生物修复至关重要。碳酸氢盐(HCO3-)是地下水的天然缓冲剂,也是实验室和受生物处理影响的污染场地中选择的缓冲剂,这些污染场地正在使用有机卤化物呼吸微生物进行生物处理。然而,HCO3-也可作为氢营养型产甲烷菌和氢营养型同型乙酸菌的电子受体,这两种微生物群与有机卤化物呼吸菌竞争氢(H2)。我们研究了 HCO3-作为缓冲剂的作用以及在一系列浓度(2.5-30 mM)下 HCO3-消耗反应的作用,初始 pH 为 7.5,在含有 Dehalococcoides 的 H2 进料 TCE 还原脱氯群落中,存在氢营养型产甲烷菌和氢营养型同型乙酸菌。

结果

由于添加了不同的 HCO3-浓度导致 H2 进料电子流向甲烷生成和同型乙酸生成以及生物 HCO3-消耗导致 pH 值升高(高达 8.7),因此观察到由于添加了不同的 HCO3-浓度而导致 TCE 脱氯速率存在差异。当通过提供 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES)作为额外缓冲剂来改善 pH 缓冲时,在所有测试的 HCO3-浓度下都观察到明显更快的脱氯速率。电子平衡和定量 PCR 表明,当初始 HCO3-浓度为 2.5 和 5 mM 时,甲烷生成是主要的电子汇,而当提供 10 和 30 mM HCO3-时,同型乙酸生成是主要的过程和汇。

结论

我们的研究表明,HCO3-是氯代烯烃生物修复的一个重要变量,因为它作为甲烷生成和同型乙酸生成的电子受体具有重要作用。它还说明了由于 HCO3-刺激的电子供体竞争和产甲烷菌和同型乙酸菌引起的 pH 值变化的共同作用,导致还原脱氯的速率和程度发生变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1da1/3511292/f2fac9fb8f1c/1475-2859-11-128-1.jpg

相似文献

1
Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes.
Microb Cell Fact. 2012 Sep 13;11:128. doi: 10.1186/1475-2859-11-128.
2
The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors.
Environ Sci Pollut Res Int. 2015 Dec;22(23):19039-47. doi: 10.1007/s11356-015-5117-z. Epub 2015 Aug 2.
5
CO-driven electron and carbon flux fuels synergistic microbial reductive dechlorination.
Microbiome. 2024 Aug 20;12(1):154. doi: 10.1186/s40168-024-01869-y.
6
Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities.
Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.03384-16. Print 2017 Apr 15.
7
Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " Dehalogenimonas etheniformans".
Appl Environ Microbiol. 2022 Jun 28;88(12):e0044322. doi: 10.1128/aem.00443-22. Epub 2022 Jun 8.

引用本文的文献

1
Biotransforming the "Forever Chemicals": Trends and Insights from Microbiological Studies on PFAS.
Environ Sci Technol. 2025 Mar 25;59(11):5417-5430. doi: 10.1021/acs.est.4c04557. Epub 2025 Mar 11.
2
Mixotrophy in Marine Microalgae to Enhance Their Bioactivity.
Microorganisms. 2025 Feb 5;13(2):338. doi: 10.3390/microorganisms13020338.
3
Interaction between nitrate and trichloroethene bioreduction in mixed anaerobic cultures.
Front Microbiol. 2025 Jan 15;15:1504235. doi: 10.3389/fmicb.2024.1504235. eCollection 2024.
4
Acetylene Tunes Microbial Growth During Aerobic Cometabolism of Trichloroethene.
Environ Sci Technol. 2024 Apr 9;58(14):6274-6283. doi: 10.1021/acs.est.3c08068. Epub 2024 Mar 26.
8
The occurrence and ecology of microbial chain elongation of carboxylates in soils.
ISME J. 2021 Jul;15(7):1907-1918. doi: 10.1038/s41396-021-00893-2. Epub 2021 Feb 8.
9
The effects of CO and H on CO metabolism by pure and mixed microbial cultures.
Biotechnol Biofuels. 2017 Sep 16;10:220. doi: 10.1186/s13068-017-0910-1. eCollection 2017.
10
Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture.
Front Microbiol. 2017 Aug 3;8:1439. doi: 10.3389/fmicb.2017.01439. eCollection 2017.

本文引用的文献

1
A comprehensive and quantitative review of dark fermentative biohydrogen production.
Microb Cell Fact. 2012 Aug 27;11:115. doi: 10.1186/1475-2859-11-115.
3
Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene.
Appl Microbiol Biotechnol. 2011 Dec;92(5):1063-71. doi: 10.1007/s00253-011-3388-y. Epub 2011 Jun 12.
4
The little bacteria that can - diversity, genomics and ecophysiology of 'Dehalococcoides' spp. in contaminated environments.
Microb Biotechnol. 2010 Jul;3(4):389-402. doi: 10.1111/j.1751-7915.2009.00147.x. Epub 2009 Sep 4.
5
Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents.
Bioresour Technol. 2011 Feb;102(3):3193-9. doi: 10.1016/j.biortech.2010.10.146. Epub 2010 Nov 4.
7
Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
Bioresour Technol. 2011 Jan;102(1):263-71. doi: 10.1016/j.biortech.2010.03.133. Epub 2010 Apr 28.
9
Reductive dehalogenation of trichloroethene vapors in an anaerobic biotrickling filter.
Environ Sci Technol. 2009 Oct 15;43(20):7856-61. doi: 10.1021/es901305x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验