Rhile Ian J, Markle Todd F, Nagao Hirotaka, DiPasquale Antonio G, Lam Oanh P, Lockwood Mark A, Rotter Katrina, Mayer James M
Department of Chemistry, Campus Box 351700, University of Washington, Seattle, Washington 98195-1700, USA.
J Am Chem Soc. 2006 May 10;128(18):6075-88. doi: 10.1021/ja054167+.
Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, ()OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [()(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.
三种带有侧链氢键碱基的酚类化合物(HOAr-B)在乙腈中用各种单电子氧化剂进行了氧化反应。这些碱基分别是伯胺(-CPh₂NH₂)、咪唑和吡啶。在每种情况下,化学氧化和准可逆电化学氧化的产物都是酚氧基自由基,其中酚质子已转移到碱基上,即()OAr-BH⁺,这是一个质子耦合电子转移(PCET)过程。这些氧化反应的氧化还原电位低于其他酚类化合物,主要源于质子移动的驱动力。基于热化学论据、同位素效应以及ΔΔG‡/ΔΔG°,酚类化合物的单电子氧化通过协同质子 - 电子转移(CPET)机制发生。这些数据排除了涉及初始电子转移形成酚自由基阳离子[()⁺HOAr-B]或初始质子转移生成两性离子[(-)OAr-BH⁺]的分步路径。从HOAr-NH₂到铂电极的异相电子转移速率常数已通过电化学测量得出。对于HOAr-NH₂的氧化反应,溶液速率常数对驱动力、温度和氧化剂性质的依赖性,以及均相和异相速率常数之间的对应关系,都与绝热Marcus理论的应用一致。CPET重组能λ = 23 - 56 kcal mol⁻¹,与芳香族化合物的电子转移反应相比很大。基于从速率常数的温度依赖性得出的H(rp)最小值,这些反应并非高度非绝热。这些是对质子和电子转移到不同位点的CPET反应的首批详细分析之一。