Suppr超能文献

基于朴素贝叶斯分类器的便携式超声全乳病灶检测。

Whole breast lesion detection using naive bayes classifier for portable ultrasound.

机构信息

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Ultrasound Med Biol. 2012 Nov;38(11):1870-80. doi: 10.1016/j.ultrasmedbio.2012.07.006. Epub 2012 Sep 10.

Abstract

In recent years, portable PC-based ultrasound (US) imaging systems developed by some companies can provide an integrated computer environment for computer-aided diagnosis and detection applications. In this article, an automatic whole breast lesion detection system based on the naive Bayes classifier using the PC-based US system Terason t3000 (Terason Ultrasound, Burlington, MA, USA) with a hand-held probe is proposed. To easily retrieve the US images for any regions of the breast, a clock-based storing system is proposed to record the scanned US images. A computer-aided detection (CAD) system is also developed to save the physicians' time for a huge volume of scanned US images. The pixel classification of the US is based on the naive Bayes classifier for the proposed lesion detection system. The pixels of the US are classified into two types: lesions or normal tissues. The connected component labeling is applied to find the suspected lesions in the image. Consequently, the labeled two-dimensional suspected regions are separated into two clusters and further checked by two-phase lesion selection criteria for the determination of the real lesion, while reducing the false-positive rate. The free-response operative characteristics (FROC) curve is used to evaluate the detection performance of the proposed system. According to the experimental results of 31 cases with 33 lesions, the proposed system yields a 93.4% (31/33) sensitivity at 4.22 false positives (FPs) per hundred slices. Moreover, the speed for the proposed detection scheme achieves 12.3 frames per second (fps) with an Intel Dual-Core Quad 3 GHz processor and can be also effectively and efficiently used for other screening systems.

摘要

近年来,一些公司开发的基于便携式个人计算机的超声(US)成像系统可为计算机辅助诊断和检测应用提供集成的计算机环境。本文提出了一种基于朴素贝叶斯分类器的自动全乳病变检测系统,该系统使用基于个人计算机的 Terason t3000(Terason Ultrasound,Burlington,MA,USA)US 系统和手持式探头。为了方便检索乳房的任何区域的 US 图像,提出了一种基于时钟的存储系统来记录扫描的 US 图像。还开发了计算机辅助检测(CAD)系统,以节省医生处理大量扫描 US 图像的时间。US 的像素分类基于所提出的病变检测系统的朴素贝叶斯分类器。US 的像素分为两种类型:病变或正常组织。应用连通分量标记法在图像中找到可疑病变。因此,将标记的二维可疑区域分为两个簇,并进一步通过两阶段病变选择标准进行检查,以确定真正的病变,同时降低假阳性率。使用自由响应操作特性(FROC)曲线评估所提出系统的检测性能。根据 31 例 33 个病变的实验结果,所提出的系统在每百张切片 4.22 个假阳性(FP)时具有 93.4%(31/33)的灵敏度。此外,所提出的检测方案的速度在具有 Intel Dual-Core Quad 3GHz 处理器的情况下达到 12.3 帧/秒,并且还可以有效地用于其他筛选系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验