Suppr超能文献

评估 Memorial Sloan-Kettering 癌症中心列线图在荷兰乳腺癌人群中预测前哨淋巴结转移的能力。

Assessment of the Memorial Sloan-Kettering Cancer Center nomogram to predict sentinel lymph node metastases in a Dutch breast cancer population.

机构信息

Department of Surgery, Gelderse Vallei Hospital, Ede, The Netherlands.

出版信息

Eur J Cancer. 2013 Feb;49(3):564-71. doi: 10.1016/j.ejca.2012.04.025. Epub 2012 Sep 10.

Abstract

AIM

Sentinel lymph node (SLN) biopsy is an accepted alternative to axillary lymph node dissection to assess the axillary tumour status in breast cancer patients. Memorial Sloan-Kettering Cancer Center (MSKCC) developed a nomogram to predict the likelihood of SLN metastases in breast cancer patients. Nomogram performance was tested on a Dutch population.

METHODS

Data of 770 breast cancer patients who underwent successful SLN biopsy were collected. SLN metastases were present in 222 patients. A receiver operating characteristic (ROC) curve was drawn and the area under the curve was calculated to assess the discriminative ability of the MSKCC nomogram. A calibration plot was drawn to compare actual versus nomogram-predicted probabilities.

RESULTS

The area under the ROC curve for the predictive nomogram was 0.67 (95% confidence interval 0.63-0.72) as compared to 0.75 in the original population. The nomogram was well-calibrated in the Dutch population.

CONCLUSIONS

In a Dutch population, the MSKCC nomogram estimated risk of sentinel node metastases in breast cancer patients well (i.e. calibration) with reasonable discrimination (area under ROC curve). Nomogram performance on core needle biopsy data has to be evaluated prospectively.

摘要

目的

前哨淋巴结(SLN)活检是一种替代腋窝淋巴结清扫术的方法,可用于评估乳腺癌患者的腋窝肿瘤状态。纪念斯隆-凯特琳癌症中心(MSKCC)开发了一种列线图,用于预测乳腺癌患者 SLN 转移的可能性。该列线图的性能已在荷兰人群中进行了测试。

方法

收集了 770 例成功进行 SLN 活检的乳腺癌患者的数据。222 例患者存在 SLN 转移。绘制了受试者工作特征(ROC)曲线,并计算曲线下面积以评估 MSKCC 列线图的判别能力。绘制校准图以比较实际概率与列线图预测概率。

结果

预测列线图的 ROC 曲线下面积为 0.67(95%置信区间 0.63-0.72),而原始人群中的面积为 0.75。该列线图在荷兰人群中得到了很好的校准。

结论

在荷兰人群中,MSKCC 列线图能够很好地估计乳腺癌患者 SLN 转移的风险(即校准),且具有合理的判别能力(ROC 曲线下面积)。核心针活检数据的列线图性能需要前瞻性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验