Suppr超能文献

比较 ActiGraph 方程在老年人中估计能量消耗的应用。

Comparing ActiGraph equations for estimating energy expenditure in older adults.

机构信息

a Department of Physical Education, Sports and Recreation ; Universidad de La Frontera , Temuco , Chile.

b Global Brain Health Institute , University of California San Francisco | Trinity College Dublin , Dublin , Ireland.

出版信息

J Sports Sci. 2019 Jan;37(2):188-195. doi: 10.1080/02640414.2018.1488437. Epub 2018 Jun 18.

Abstract

Accurate estimation of energy expenditure (EE) from accelerometer outputs remains a challenge in older adults. The aim of this study was to validate different ActiGraph (AG) equations for predicting EE in older adults. Forty older adults (age = 77.4 ± 8.1 yrs) completed a set of household/gardening activities in their residence, while wearing an AG at the hip (GT3X+) and a portable calorimeter (MetaMax 3B - criterion). Predicted EEs from AG were calculated using five equations (Freedson, refined Crouter, Sasaki and Santos-Lozano (vertical-axis, vectormagnitude)). Accuracy of equations was assessed using root-mean-square error (RMSE) and mean bias. The Sasaki equation showed the lowest RMSE for all activities (0.47 METs) and across physical activity intensities (PAIs) (range 0.18-0.48 METs). The Freedson and Santos-Lozano equations tended to overestimate EE for sedentary activities (range: 0.48 to 0.97 METs), while EEs for moderate-to-vigorous activities (MVPA) were underestimated (range: -1.02 to -0.64 METs). The refined Crouter and Sasaki equations showed no systematic bias, but they respectively overestimated and underestimated EE across PAIs. In conclusion, none of the equations was completely accurate for predicting EE across the range of PAIs. However, the refined Crouter and Sasaki equations showed better overall accuracy and precision when compared with the other methods.

摘要

准确估计加速度计输出的能量消耗 (EE) 仍然是老年人面临的挑战。本研究旨在验证不同的 ActiGraph (AG) 方程在预测老年人 EE 方面的有效性。40 名老年人(年龄 = 77.4 ± 8.1 岁)在居住的家中/花园中完成了一系列活动,同时在臀部佩戴 AG(GT3X+)和便携式热量计(MetaMax 3B-标准)。使用五个方程(Freedson、 refined Crouter、Sasaki 和 Santos-Lozano(垂直轴、矢量幅度))计算 AG 预测的 EE。使用均方根误差 (RMSE) 和平均偏差评估方程的准确性。Sasaki 方程在所有活动(0.47 METs)和所有身体活动强度 (PAI)(范围为 0.18-0.48 METs)中均表现出最低的 RMSE。Freedson 和 Santos-Lozano 方程倾向于高估久坐活动的 EE(范围:0.48 至 0.97 METs),而中高强度活动 (MVPA) 的 EE 则被低估(范围:-1.02 至-0.64 METs)。refined Crouter 和 Sasaki 方程没有显示出系统偏差,但它们分别在整个 PAI 范围内高估和低估了 EE。总之,没有一个方程能够完全准确地预测整个 PAI 范围内的 EE。然而,与其他方法相比,refined Crouter 和 Sasaki 方程在整体准确性和精度方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0b/6298850/6720d17b84fc/nihms-998354-f0001.jpg

相似文献

8
Estimating energy expenditure using accelerometers.使用加速度计估算能量消耗。
Eur J Appl Physiol. 2006 Dec;98(6):601-12. doi: 10.1007/s00421-006-0307-5. Epub 2006 Oct 21.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验