Center for Biomaterial Development and Berlin-Brandenburg Centre for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
Clin Hemorheol Microcirc. 2012;52(2-4):357-73. doi: 10.3233/CH-2012-1611.
Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into a variety of cell types. Therefore, they are widely explored in regenerative medicine. The interaction of MSCs with biomaterials is of great importance for cell proliferation, differentiation and function, and can be strongly influenced by numerous factors, such as the chemical nature and the mechanical properties of the material surface. In this study, we investigated the interaction of bone marrow derived human MSCs with different amorphous and transparent polymers namely polystyrene (PS), polycarbonate (PC), poly(ether imide) (PEI), polyetherurethane (PEU) and poly(styrene-co-acrylonitrile) (PSAN). To ensure that the MSCs were solely in contact to the testing material we applied polymeric inserts, which were prepared from the aforementioned polymers via injection molding. The explored inserts exhibited a similar wettability with advancing contact angles ranging from 84 ± 7° (PEU) to 99 ± 5° (PS) and a surface roughness of Rq ≤ 0.86 μm. The micromechanical properties determined by AFM indentation varied from 6 ± 1 GPa (PEU) to 24 ± 5 GPa (PSAN). Cells presented different adhesion rates on the polymer surfaces 24 hours after seeding (45 ± 7% (PS), 63 ± 1% (PC), 75 ± 4% (PEI), 69 ± 2% (PEU) and 61 ± 5% (PSAN)). The cells could proliferate on the polymer surfaces, and the fold change of cell number after 16 days of culture reached to 1.93 ± 0.07 (PS), 3.38 ± 0.11 (PC), 3.65 ± 0.04 (PEI), 2.24 ± 0.15 (PEU) and 3.36 ± 0.09 (PSAN). Differences in cell apoptosis could be observed during the culture. After 7 days, the apoptosis of cells on PC, PEI and PSAN decreased to a level comparable to that on standard tissue culture plate (TCP). All of the tested polymers exhibited low cytotoxicity and allowed high cell viability. Compared to cells on TCP, cells on PC and PEI showed similar morphology, distribution as well as F-actin cytoskeleton organization, whereas cells on PSAN were distributed less evenly and cells on PEU were less oriented. Cells were more likely to form clusters on PS. Conclusively, we demonstrated the influence of polymer substrates on the cellular behaviour of MSCs, which could be included in the development of novel design concepts based on polymeric biomaterials.
间充质干细胞(MSCs)是多能干细胞,可分化为多种细胞类型。因此,它们在再生医学中得到了广泛的探索。MSCs 与生物材料的相互作用对于细胞增殖、分化和功能非常重要,并且可以受到许多因素的强烈影响,例如材料表面的化学性质和机械性能。在这项研究中,我们研究了骨髓来源的人 MSCs 与不同的无定形和透明聚合物的相互作用,这些聚合物分别是聚苯乙烯(PS)、聚碳酸酯(PC)、聚醚酰亚胺(PEI)、聚醚聚氨酯(PEU)和聚苯乙烯-丙烯腈(PSAN)。为了确保 MSCs 仅与测试材料接触,我们应用了由上述聚合物通过注塑成型制备的聚合物插入物。所探索的插入物具有相似的润湿性,前进接触角范围从 84±7°(PEU)到 99±5°(PS),表面粗糙度 Rq≤0.86μm。通过 AFM 压痕测定的微机械性能从 6±1GPa(PEU)到 24±5GPa(PSAN)不等。细胞在接种后 24 小时在聚合物表面上表现出不同的粘附率(45±7%(PS)、63±1%(PC)、75±4%(PEI)、69±2%(PEU)和 61±5%(PSAN))。细胞可以在聚合物表面上增殖,培养 16 天后细胞数量的倍增达到 1.93±0.07(PS)、3.38±0.11(PC)、3.65±0.04(PEI)、2.24±0.15(PEU)和 3.36±0.09(PSAN)。在培养过程中可以观察到细胞凋亡的差异。培养 7 天后,PC、PEI 和 PSAN 上细胞的凋亡减少到与标准组织培养板(TCP)相当的水平。所有测试的聚合物均表现出低细胞毒性并允许高细胞活力。与 TCP 上的细胞相比,PC 和 PEI 上的细胞表现出相似的形态、分布以及 F-肌动蛋白细胞骨架组织,而 PSAN 上的细胞分布不均匀,PEU 上的细胞取向较差。细胞更有可能在 PS 上形成聚集体。总之,我们证明了聚合物基底对 MSCs 细胞行为的影响,这可以纳入基于聚合物生物材料的新型设计概念的开发。