Undan Jerwin R, Tamiru Muluneh, Abe Akira, Yoshida Kentaro, Kosugi Shunichi, Takagi Hiroki, Yoshida Kakoto, Kanzaki Hiroyuki, Saitoh Hiromasa, Fekih Rym, Sharma Shailendra, Undan Jesusa, Yano Masahiro, Terauchi Ryohei
Iwate Biotechnology Research Center, Kitakami, Narita 22-174-4, Iwate 024-0003, Japan.
Genes Genet Syst. 2012;87(3):169-79. doi: 10.1266/ggs.87.169.
The rice (Oryza sativa L.) lesion mimic and senescence (lms) EMS-mutant, identified in a japonica cultivar Hitomebore, is characterized by a spontaneous lesion mimic phenotype during its vegetative growth, an accelerated senescence after flowering, and enhanced resistance to rice blast (Magnaporthe oryzae). To isolate the OsLMS gene, we crossed the lms mutant to Kasalath (indica), and used mutant F(2) plants to initially map the candidate region to about 322-kb on the long arm of chromosome 2. Illumina whole-genome re-sequencing of the mutant and aligning the reads to Hitomebore reference sequence within the candidate region delineated by linkage analysis identified a G to A nucleotide substitution. The mutation corresponded to the exon-intron splicing junction of a novel gene that encodes a carboxyl-terminal domain (CTD) phosphatase domain and two double stranded RNA binding motifs (dsRBM) containing protein. By PCR amplification, we confirmed that the mutation causes splicing error that is predicted to introduce a premature stop codon. RNA interference (RNAi) transgenic lines with suppressed expression of LMS gene exhibited the lesion mimic phenotype, confirming that the mutation identified in LMS is responsible for the mutant phenotype. OsLMS shares a moderate amino-acid similarity to the Arabidopsis FIERY2/CPL1 gene, which is known to control many plant processes such as stress response and development. Consistence with this similarity, the lms mutant shows sensitivity to cold stress at the early growth stage, suggesting that LMS is a negative regulator of stress response in rice.
在粳稻品种“日之光”中鉴定出的水稻(Oryza sativa L.)病变模拟与衰老(lms)EMS突变体,其特征在于营养生长阶段具有自发的病变模拟表型,开花后衰老加速,并且对稻瘟病(Magnaporthe oryzae)的抗性增强。为了分离OsLMS基因,我们将lms突变体与“卡萨拉思”(籼稻)杂交,并使用突变体F2植株初步将候选区域定位到2号染色体长臂上约322 kb的区域。对突变体进行Illumina全基因组重测序,并将读取的序列与连锁分析划定的候选区域内的“日之光”参考序列进行比对,确定了一个G到A的核苷酸替换。该突变对应于一个新基因的外显子-内含子剪接位点,该基因编码一个包含羧基末端结构域(CTD)磷酸酶结构域和两个双链RNA结合基序(dsRBM)的蛋白质。通过PCR扩增,我们证实该突变导致剪接错误,预计会引入一个提前的终止密码子。LMS基因表达受抑制的RNA干扰(RNAi)转基因系表现出病变模拟表型,证实LMS中鉴定出的突变导致了突变体表型。OsLMS与拟南芥FIERY2/CPL1基因具有中等程度的氨基酸相似性,已知该基因控制许多植物过程,如应激反应和发育。与这种相似性一致,lms突变体在生长早期对冷胁迫敏感,表明LMS是水稻应激反应的负调控因子。