State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
Int J Mol Sci. 2024 Jun 17;25(12):6637. doi: 10.3390/ijms25126637.
Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2. We identified , named , as the causative gene. A point mutation in , substituting valine for glutamic acid, was identified as the critical factor for the phenotype. Functional complementation and the generation of CRISPR/Cas9-mediated knockout lines in the IR64 background confirmed the central role of OsRPT5A in controlling this trait. The qPCR results from different parts of the rice plant revealed that is constitutively expressed across various tissues, with its subcellular localization unaffected by the mutation. Notably, we observed an abnormal accumulation of reactive oxygen species (ROS) in mutants by examining the physiological indexes of leaves, suggesting a disruption in the ROS system. Complementation studies indicated OsRPT5A's involvement in ROS homeostasis and catalase activity regulation. Moreover, the mutant exhibited enhanced resistance to pv. (), highlighting OsRPT5A's role in rice pathogen resistance mechanisms. Overall, our results suggest that OsRPT5A plays a critical role in regulating ROS homeostasis and enhancing pathogen resistance in rice.
我们的研究旨在探讨水稻斑点叶表型的遗传机制,重点研究 突变体。该突变体的特征是从幼苗期到成熟阶段持续出现红棕色斑点,导致广泛的叶片坏死。通过基于图谱的克隆,我们将负责的基因座定位到染色体 2 上的 330 Kb 区域。我们鉴定出 ,命名为 ,为致病基因。突变导致谷氨酸被缬氨酸取代,是表型的关键因素。在 IR64 背景下的功能互补和 CRISPR/Cas9 介导的敲除系的产生证实了 OsRPT5A 在控制该性状中的核心作用。来自水稻植株不同部位的 qPCR 结果表明, 在各种组织中持续表达,其亚细胞定位不受突变影响。值得注意的是,我们通过检查叶片的生理指标观察到 突变体中活性氧 (ROS) 的异常积累,表明 ROS 系统受到干扰。互补研究表明 OsRPT5A 参与 ROS 动态平衡和过氧化氢酶活性的调节。此外, 突变体对 pv. ()表现出增强的抗性,突出了 OsRPT5A 在水稻病原体抗性机制中的作用。总体而言,我们的结果表明 OsRPT5A 在调节水稻 ROS 动态平衡和增强病原体抗性方面发挥着关键作用。