Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, Planegg-Martinsried, Germany.
Planta. 2013 Feb;237(2):429-39. doi: 10.1007/s00425-012-1762-3. Epub 2012 Sep 14.
Plant mitochondria can differ in size, shape, number and protein content across different tissue types and over development. These differences are a result of signaling and regulatory processes that ensure mitochondrial function is tuned in a cell-specific manner to support proper plant growth and development. In the last decade, the processes involved in mitochondrial biogenesis are becoming clearer, including; how dormant seeds transition from empty promitochondria to fully functional mitochondria with extensive cristae structures and various biochemical activities, the regulation of nuclear genes encoding mitochondrial proteins via regulators of the diurnal cycle in plants, the mitochondrial stress response, the targeting of proteins to mitochondria and other organelles and connections between the respiratory chain and protein import complexes. All these findings indicate that mitochondrial function is a part of an integrated cellular network, and communication between mitochondria and other cellular processes extends beyond the known exchange or transport of metabolites. Our current knowledge now needs to be used to gain more insight into the molecular components at various levels of this hierarchical and complex regulatory and communication network, so that mitochondrial function can be predicted and modified in a rational manner.
植物线粒体在不同组织类型和发育过程中的大小、形状、数量和蛋白质含量可能存在差异。这些差异是信号转导和调节过程的结果,可确保线粒体功能以细胞特异性的方式进行调整,以支持植物的正常生长和发育。在过去的十年中,线粒体生物发生的过程变得更加清晰,包括:休眠种子如何从空的前体线粒体过渡到具有广泛嵴结构和各种生化活性的完全功能的线粒体,通过植物昼夜节律调节剂对编码线粒体蛋白的核基因的调控,线粒体应激反应,蛋白质向线粒体和其他细胞器的靶向以及呼吸链和蛋白输入复合物之间的连接。所有这些发现表明,线粒体功能是一个整合的细胞网络的一部分,线粒体与其他细胞过程之间的通讯不仅限于已知的代谢物的交换或运输。我们目前的知识需要用于更深入地了解这个层次化和复杂的调节和通讯网络的各个层面的分子成分,以便能够以合理的方式预测和修改线粒体功能。