Suppr超能文献

相似文献

1
Formation and optogenetic control of engineered 3D skeletal muscle bioactuators.
Lab Chip. 2012 Dec 7;12(23):4976-85. doi: 10.1039/c2lc40338b.
2
Fabrication of skeletal muscle constructs by topographic activation of cell alignment.
Biotechnol Bioeng. 2009 Feb 1;102(2):624-31. doi: 10.1002/bit.22080.
3
Optogenetic Calcium Ion Influx in Myoblasts and Myotubes by Near-Infrared Light Using Upconversion Nanoparticles.
ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42196-42208. doi: 10.1021/acsami.3c07028. Epub 2023 Aug 31.
4
Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
PLoS One. 2020 May 6;15(5):e0232081. doi: 10.1371/journal.pone.0232081. eCollection 2020.
6
4D biofabrication of skeletal muscle microtissues.
Biofabrication. 2019 Dec 11;12(1):015016. doi: 10.1088/1758-5090/ab4cc4.
7
Optimizing the structure and contractility of engineered skeletal muscle thin films.
Acta Biomater. 2013 Aug;9(8):7885-94. doi: 10.1016/j.actbio.2013.04.036. Epub 2013 Apr 28.
8
Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts.
J Biosci Bioeng. 2020 May;129(5):632-637. doi: 10.1016/j.jbiosc.2019.11.013. Epub 2019 Dec 16.
10
Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis.
Biomaterials. 2018 Feb;156:65-76. doi: 10.1016/j.biomaterials.2017.11.041. Epub 2017 Nov 25.

引用本文的文献

1
Tetanus-driven biohybrid multijoint robots powered by muscle rings with enhanced contractile force.
Sci Adv. 2025 Jul 18;11(29):eadu9962. doi: 10.1126/sciadv.adu9962. Epub 2025 Jul 16.
2
Development of an electrical current stimulator for controlling biohybrid machines.
Sci Rep. 2025 Jul 2;15(1):22473. doi: 10.1038/s41598-025-06465-0.
3
The Morphological, Behavioral, and Transcriptomic Life Cycle of Anthrobots.
Adv Sci (Weinh). 2025 Aug;12(31):e2409330. doi: 10.1002/advs.202409330. Epub 2025 Jun 6.
4
Engineered 3D Kidney Glomerular Microtissues to Model Podocyte-Centric Diseases for the Validation of New Drug Targets.
Adv Healthc Mater. 2025 Jul;14(17):e2404767. doi: 10.1002/adhm.202404767. Epub 2025 May 23.
5
Designer mammalian living materials through genetic engineering.
Bioact Mater. 2025 Feb 15;48:135-148. doi: 10.1016/j.bioactmat.2025.02.007. eCollection 2025 Jun.
6
Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications.
Biophys Rev (Melville). 2025 Feb 12;6(1):011304. doi: 10.1063/5.0246194. eCollection 2025 Mar.
7
A Manta Ray-Inspired Biosyncretic Robot with Stable Controllability by Dynamic Electric Stimulation.
Cyborg Bionic Syst. 2022 Jul 5;2022:9891380. doi: 10.34133/2022/9891380. eCollection 2022.
8
Microfluidic technology for cell biology-related applications: a review.
J Biol Phys. 2024 Mar;50(1):1-27. doi: 10.1007/s10867-023-09646-y. Epub 2023 Dec 6.
9
Motile Living Biobots Self-Construct from Adult Human Somatic Progenitor Seed Cells.
Adv Sci (Weinh). 2024 Jan;11(4):e2303575. doi: 10.1002/advs.202303575. Epub 2023 Nov 30.
10
In vitro formation and extended culture of highly metabolically active and contractile tissues.
PLoS One. 2023 Nov 1;18(11):e0293609. doi: 10.1371/journal.pone.0293609. eCollection 2023.

本文引用的文献

1
A tissue-engineered jellyfish with biomimetic propulsion.
Nat Biotechnol. 2012 Aug;30(8):792-7. doi: 10.1038/nbt.2269.
2
Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix.
PLoS One. 2012;7(4):e36173. doi: 10.1371/journal.pone.0036173. Epub 2012 Apr 27.
3
Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.
PLoS One. 2012;7(2):e31598. doi: 10.1371/journal.pone.0031598. Epub 2012 Feb 15.
4
Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography.
Lab Chip. 2012 Jan 7;12(1):88-98. doi: 10.1039/c1lc20688e. Epub 2011 Nov 29.
5
Local tissue geometry determines contractile force generation of engineered muscle networks.
Tissue Eng Part A. 2012 May;18(9-10):957-67. doi: 10.1089/ten.TEA.2011.0313. Epub 2012 Jan 4.
6
Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle.
Tissue Eng Part C Methods. 2012 May;18(5):349-57. doi: 10.1089/ten.TEC.2011.0364. Epub 2011 Dec 28.
7
A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues.
Tissue Eng Part A. 2012 May;18(9-10):910-9. doi: 10.1089/ten.tea.2011.0341. Epub 2012 Jan 4.
8
Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip.
Lab Chip. 2011 Dec 21;11(24):4165-73. doi: 10.1039/c1lc20557a. Epub 2011 Nov 10.
9
Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery.
Circ Arrhythm Electrophysiol. 2011 Oct;4(5):753-60. doi: 10.1161/CIRCEP.111.964247. Epub 2011 Aug 9.
10
Optically controlled contraction of photosensitive skeletal muscle cells.
Biotechnol Bioeng. 2012 Jan;109(1):199-204. doi: 10.1002/bit.23285. Epub 2011 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验