Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
J Neural Eng. 2012 Oct;9(5):056012. doi: 10.1088/1741-2560/9/5/056012. Epub 2012 Sep 13.
Maintenance of cognitive control is a major concern for many human disease conditions; therefore, a major goal of human neuroprosthetics is to facilitate and/or recover the cognitive function when such circumstances impair appropriate decision making.
Minicolumnar activity from the prefrontal cortex (PFC) was recorded from nonhuman primates trained to perform a delayed match to sample (DMS), via custom-designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in the PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input-multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multicolumnar firing patterns during DMS performance.
The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed the substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation improved normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following the pharmacological disruption of decision making in the same task.
These findings provide the first successful application of neuroprosthesis in the primate brain designed specifically to restore or repair the disrupted cognitive function.
认知控制的维持是许多人类疾病状况的主要关注点;因此,人类神经假肢的主要目标是在这些情况下损害适当的决策制定时促进和/或恢复认知功能。
通过定制的共形多电极阵列,从接受过延迟匹配样本 (DMS) 训练的非人灵长类动物的前额叶皮层 (PFC) 记录到最小柱层活动,该阵列提供了来自 PFC 层 2/3 和层 5 的神经元的层间记录。通过以前在啮齿动物中展示的非线性多输入多输出 (MIMO) 神经假肢对这些记录进行了分析,该假肢提取并描述了 DMS 性能期间的多柱层点火模式。
MIMO 模型验证了共形记录的单个 PFC 最小柱层以对目标选择至关重要的模式对引出的目标选择做出反应,从而在目标选择时,从 2/3 层到柱层传输期间,用电刺激替代与任务相关的 5 层神经元点火模式在相同的记录区域。这种刺激改善了正常的任务性能,但更重要的是,在相同任务中药物破坏决策制定后,作为神经假肢应用时恢复了性能。
这些发现提供了第一个专门设计用于恢复或修复受损认知功能的灵长类动物大脑神经假肢的成功应用。