Suppr超能文献

神经形态生物混合系统中的可塑性与适应性

Plasticity and Adaptation in Neuromorphic Biohybrid Systems.

作者信息

George Richard, Chiappalone Michela, Giugliano Michele, Levi Timothée, Vassanelli Stefano, Partzsch Johannes, Mayr Christian

机构信息

Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany.

Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy.

出版信息

iScience. 2020 Sep 23;23(10):101589. doi: 10.1016/j.isci.2020.101589. eCollection 2020 Oct 23.

Abstract

Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel "biohybrid" experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering.

摘要

神经形态系统从生物信息处理原理中获取灵感,以形成能够大规模实现神经网络的硬件平台。近年来,用于分类和控制任务的脉冲神经网络在理论方面取得了进展,同时电生理方法也取得了进步,推动了智能神经接口和信号处理技术的前沿发展。在这些新技术的前沿,人工神经网络和生物神经网络紧密结合,为工程师和神经生理学家提供了一个新颖的“生物混合”实验框架。事实上,生物混合系统可以构成一类新型神经假体,为神经系统疾病的治疗开辟重要前景。此外,使用生物学上合理的学习规则可以形成一个由共同发展的子系统组成的整体容错系统。为了识别神经形态生物混合系统中的机遇和挑战,我们从神经生物学、计算神经科学和神经形态工程的角度来探讨这个领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d236/7554028/c57f57172e65/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验