Département Génomes et Génétique, Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.
Mol Biol Evol. 2013 Feb;30(2):315-31. doi: 10.1093/molbev/mss221. Epub 2012 Sep 13.
Genetic exchange by conjugation is responsible for the spread of resistance, virulence, and social traits among prokaryotes. Recent works unraveled the functioning of the underlying type IV secretion systems (T4SS) and its distribution and recruitment for other biological processes (exaptation), notably pathogenesis. We analyzed the phylogeny of key conjugation proteins to infer the evolutionary history of conjugation and T4SS. We show that single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) conjugation, while both based on a key AAA(+) ATPase, diverged before the last common ancestor of bacteria. The two key ATPases of ssDNA conjugation are monophyletic, having diverged at an early stage from dsDNA translocases. Our data suggest that ssDNA conjugation arose first in diderm bacteria, possibly Proteobacteria, and then spread to other bacterial phyla, including bacterial monoderms and Archaea. Identifiable T4SS fall within the eight monophyletic groups, determined by both taxonomy and structure of the cell envelope. Transfer to monoderms might have occurred only once, but followed diverse adaptive paths. Remarkably, some Firmicutes developed a new conjugation system based on an atypical relaxase and an ATPase derived from a dsDNA translocase. The observed evolutionary rates and patterns of presence/absence of specific T4SS proteins show that conjugation systems are often and independently exapted for other functions. This work brings a natural basis for the classification of all kinds of conjugative systems, thus tackling a problem that is growing as fast as genomic databases. Our analysis provides the first global picture of the evolution of conjugation and shows how a self-transferrable complex multiprotein system has adapted to different taxa and often been recruited by the host. As conjugation systems became specific to certain clades and cell envelopes, they may have biased the rate and direction of gene transfer by conjugation within prokaryotes.
基因转移通过共轭负责传播的抗性,毒力和社会特质原核生物。最近的研究解开了基础的第四型分泌系统(T4SS)的运作及其分布和招聘其他生物过程(适应),特别是发病机制。我们分析了关键共轭蛋白的系统发育推断共轭和 T4SS 的进化历史。我们表明,单链 DNA(ssDNA)和双链 DNA(dsDNA)共轭,虽然都是基于一个关键的 AAA(+)ATP 酶,在细菌的最后共同祖先之前就已经分化了。ssDNA 共轭的两个关键 ATP 酶是单系的,在 dsDNA 转位酶的早期就已经分化了。我们的数据表明,ssDNA 共轭首先在双壁细菌中出现,可能是变形菌,然后传播到其他细菌门,包括细菌单壁和古菌。可识别的 T4SS 属于 8 个单系群,由分类学和细胞包膜的结构决定。转移到单壁菌可能只发生过一次,但随后出现了不同的适应途径。值得注意的是,一些 Firmicutes 基于一种非典型的松弛酶和一种来自 dsDNA 转位酶的 ATP 酶,开发了一种新的共轭系统。观察到的进化率和存在/不存在特定 T4SS 蛋白的模式表明,共轭系统经常且独立地适应其他功能。这项工作为各种共轭系统的分类提供了一个自然的基础,从而解决了一个随着基因组数据库的快速增长而出现的问题。我们的分析提供了共轭和进化的第一个全球图景,展示了一个自我转移的复杂多蛋白系统如何适应不同的分类群,并经常被宿主招募。由于共轭系统变得特定于某些进化枝和细胞膜,它们可能会影响原核生物中通过共轭进行基因转移的速度和方向。