Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France.
PLoS Genet. 2011 Aug;7(8):e1002222. doi: 10.1371/journal.pgen.1002222. Epub 2011 Aug 18.
Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer.
水平基因转移通过允许快速获得新的适应性功能来塑造原核生物的基因组。接合允许最广泛的范围和每转导事件的最高基因转移输入。虽然已经对接合质粒进行了数十年的研究,但原核生物中整合性接合元件(ICE)的数量和多样性仍然未知。我们定义了一整套 conjugation 机制的蛋白质图谱,以扫描超过 1000 个原核生物基因组。我们在所有主要的系统发育群中发现了 682 个推定的接合系统,并表明 ICE 是原核生物中最丰富的接合元件。几乎一半的基因组包含一种 IV 型分泌系统(T4SS),较大的基因组编码更多的接合系统。令人惊讶的是,几乎一半的染色体 T4SS 缺乏共定位的松弛酶,因此可能专门用于蛋白质运输而不是接合。这类元件在小基因组中占主导地位,与整合酶的关联较少,在质粒中也较少见。变形杆菌中的 ICE 和可移动质粒具有不同的 T4SS 偏好,但所有类型都存在于染色体和质粒中。在 ICE 和质粒中,可移动元件的数量超过了自我接合元件,这表明 T4SS 在转导中得到了广泛的应用。我们的进化分析表明,质粒向 ICE 和从 ICE 向质粒的转换非常频繁,现存的元件直到最近才开始分化。根据目前的结果,ICE 是实际上所有原核生物类群中最丰富的接合元件,并且可能比以前认为的更频繁地被驯化成为非接合性蛋白质转运系统。虽然接合质粒和 ICE 有不同的基因组稳定化方式,但它们通过接合进行移动的机制显示出惊人的保守模式,这表明在通过水平基因转移塑造原核生物基因组方面,接合具有统一的观点。