Suppr超能文献

在各种动态条件下利用惯性传感器测量估计姿态和外部加速度

Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions.

作者信息

Lee Jung Keun, Park Edward J, Robinovitch Stephen N

机构信息

School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. He is now with the Department of Mechanical Engineering, Hankyong National University, Anseong 456-749, Korea.

出版信息

IEEE Trans Instrum Meas. 2012 Jan 8;61(8):2262-2273. doi: 10.1109/tim.2012.2187245.

Abstract

This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy.

摘要

本文提出了一种基于卡尔曼滤波器的姿态(即横滚和俯仰)估计算法,该算法使用由三轴加速度计和三轴陀螺仪组成的惯性传感器。特别地,所提出的算法是为在存在外部加速度的动态条件下进行精确的姿态估计而开发的。尽管外部加速度是姿态估计误差的主要来源,并且在许多应用中需要对其进行精确估计,但姿态估计中这个可能至关重要的问题在文献中尚未得到明确解决。因此,本文解决了姿态和外部加速度的联合估计问题。进行了实验测试,以验证所提出算法在各种动态条件设置下的性能,并进一步深入了解估计精度的变化情况。此外,比较了在动态条件下处理估计问题的两种不同方法,即基于阈值的切换方法与基于加速度模型的方法。基于外部加速度模型,所提出的算法能够在短加速时间段内估计出精确的姿态和外部加速度,在短期快速动态条件下显示出其高效性。相反,当测试条件涉及长时间的高外部加速度时,所提出的算法表现出误差逐渐增加的情况。然而,一旦条件恢复到静态或准静态条件,该算法就能够稳定估计误差,重新获得其高估计精度。

相似文献

引用本文的文献

本文引用的文献

2
Quasi real-time gait event detection using shank-attached gyroscopes.利用小腿佩戴的陀螺仪进行准实时步态事件检测。
Med Biol Eng Comput. 2011 Jun;49(6):707-12. doi: 10.1007/s11517-011-0736-0. Epub 2011 Jan 26.
4
iTUG, a sensitive and reliable measure of mobility.iTUG,一种敏感且可靠的移动性测量指标。
IEEE Trans Neural Syst Rehabil Eng. 2010 Jun;18(3):303-10. doi: 10.1109/TNSRE.2010.2047606. Epub 2010 Apr 12.
5
Portable preimpact fall detector with inertial sensors.带有惯性传感器的便携式撞击前跌倒探测器。
IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):178-83. doi: 10.1109/TNSRE.2007.916282.
8
Tilt determination in MEMS inertial vestibular prosthesis.
J Biomech Eng. 2006 Dec;128(6):943-56. doi: 10.1115/1.2378922.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验