Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee.
Antioxid Redox Signal. 2014 Jan 10;20(2):372-82. doi: 10.1089/ars.2012.4886. Epub 2012 Oct 19.
Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2(•-)), hydrogen peroxide, and peroxynitrite (ONOO(-)), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods.
In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection.
Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use.
Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS.
线粒体和细胞活性氧 (ROS) 在生理和病理过程中都起着重要作用。不同的 ROS,如超氧阴离子 (O2(•-))、过氧化氢和过氧亚硝酸盐 (ONOO(-)),刺激不同的细胞信号通路,并根据其数量和亚细胞定位产生不同的结果。已经开发出多种用于 ROS 检测的方法;然而,其中许多方法不具有特异性,不允许亚细胞定位,并且会产生假象。在这篇综述中,我们将批判性地分析 ROS 检测,并介绍几种现有方法的优点和缺点。
在过去的十年中,已经开发出许多新的荧光探针、电子自旋共振方法和免疫测定法。这些新的最先进的方法为 ROS 检测提供了更高的选择性和亚细胞分辨率。
尽管已经有几年时间可以使用 HPLC 超氧检测的新方法、荧光硼酸探针的应用、靶向细胞的羟胺自旋探针的使用以及免疫自旋捕获,但这些方法在生物医学研究中的转化却缺乏,限制了它们的广泛应用。
需要进一步研究将这些新技术从试管转化为生理应用,这可能会导致这些方法更广泛地应用于研究线粒体和细胞 ROS。