Suppr超能文献

一种识别重金属潜在生态风险管理优先空间格局的方法。

A method of identifying priority spatial patterns for the management of potential ecological risks posed by heavy metals.

机构信息

Department of Environmental Science and Engineering, Fudan University, Handan Road 220, Shanghai 200433, China.

出版信息

J Hazard Mater. 2012 Oct 30;237-238:290-8. doi: 10.1016/j.jhazmat.2012.08.044. Epub 2012 Sep 3.

Abstract

An approach of identifying priority spatial patterns in response to different ecological risk levels associated with heavy metals (HM) is proposed. First, ecological hotspots (EH) are delineated by integrating NDVI-based assessment with the impact assessment of anthropogenic impact sources. Second, the HM potential ecological risks index (PERI) is calculated and spatially interpolated. Finally, the EH with different PERI values are identified through logic calculation. Study results show that 45.2% of the study region has low HM risks, 53.2% with moderate HM risks, and only 1.6% with high HM risks. In addition, the percentage of EH with low HM risks is 6.5%; the percentage with moderate HM risks is 5.4%; and the percentage with high HM risks is 0.4%. The EH with low and moderate HM ecological risks are proposed to be the regions in priority for management. This approach is potentially useful to HM ecological risk assessment and HM contamination management around the world.

摘要

提出了一种针对与重金属(HM)相关的不同生态风险水平识别优先空间模式的方法。首先,通过整合基于 NDVI 的评估与人为影响源影响评估,划定生态热点(EH)。其次,计算并空间插值 HM 潜在生态风险指数(PERI)。最后,通过逻辑计算识别具有不同 PERI 值的 EH。研究结果表明,研究区域有 45.2%的区域 HM 风险较低,53.2%的区域 HM 风险为中等,只有 1.6%的区域 HM 风险较高。此外,EH 中 HM 风险较低的比例为 6.5%;HM 风险中等的比例为 5.4%;HM 风险高的比例为 0.4%。建议将具有低和中 HM 生态风险的 EH 作为优先管理区域。该方法对于全球的 HM 生态风险评估和 HM 污染管理具有潜在的应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验