Department of Statistics, University of Virginia, Charlottesville, VA 22904, USA.
Neuroimage. 2012 Nov 15;63(3):1754-65. doi: 10.1016/j.neuroimage.2012.08.014. Epub 2012 Aug 17.
Estimation and inferences for the hemodynamic response functions (HRF) using multi-subject fMRI data are considered. Within the context of the General Linear Model, two new nonparametric estimators for the HRF are proposed. The first is a kernel-smoothed estimator, which is used to construct hypothesis tests on the entire HRF curve, in contrast to only summaries of the curve as in most existing tests. To cope with the inherent large data variance, we introduce a second approach which imposes Tikhonov regularization on the kernel-smoothed estimator. An additional bias-correction step, which uses multi-subject averaged information, is introduced to further improve efficiency and reduce the bias in estimation for individual HRFs. By utilizing the common properties of brain activity shared across subjects, this is the main improvement over the standard methods where each subject's data is usually analyzed independently. A fast algorithm is also developed to select the optimal regularization and smoothing parameters. The proposed methods are compared with several existing regularization methods through simulations. The methods are illustrated by an application to the fMRI data collected under a psychology design employing the Monetary Incentive Delay (MID) task.
本文考虑了使用多体功能磁共振成像 (fMRI) 数据估计和推断血流动力学响应函数 (HRF)。在广义线性模型的背景下,提出了两种新的 HRF 非参数估计器。第一个是核平滑估计器,它用于对整个 HRF 曲线进行假设检验,而不是像大多数现有检验那样只对曲线的总结进行检验。为了应对固有的大数据方差,我们引入了第二种方法,即在核平滑估计器上施加 Tikhonov 正则化。引入了一个附加的偏置校正步骤,该步骤使用多体平均信息,进一步提高了效率,并减少了个体 HRF 估计中的偏差。通过利用跨受试者共享的大脑活动的共同特性,这是对标准方法的主要改进,其中通常独立分析每个受试者的数据。还开发了一种快速算法来选择最佳的正则化和平滑参数。通过模拟比较了所提出的方法与几种现有的正则化方法。该方法通过应用于在使用货币激励延迟 (MID) 任务的心理学设计下收集的 fMRI 数据来说明。