Suppr超能文献

功能磁共振成像中基于体素和个体间的血流动力学变异性的组水平影响。

Group-level impacts of within- and between-subject hemodynamic variability in fMRI.

机构信息

CEA/DSV/I(2)BM/NeuroSpin, CEA Saclay, Bât. 145, Point Courrier 156, 91191 Gif-sur-Yvette cedex, France.

出版信息

Neuroimage. 2013 Nov 15;82:433-48. doi: 10.1016/j.neuroimage.2013.05.100. Epub 2013 Jun 2.

Abstract

Inter-subject fMRI analyses have specific issues regarding the reliability of the results concerning both the detection of brain activation patterns and the estimation of the underlying dynamics. Among these issues lies the variability of the hemodynamic response function (HRF), that is usually accounted for using functional basis sets in the general linear model context. Here, we use the joint detection-estimation approach (JDE) (Makni et al., 2008; Vincent et al., 2010) which combines regional nonparametric HRF inference with spatially adaptive regularization of activation clusters to avoid global smoothing of fMRI images. We show that the JDE-based inference brings a significant improvement in statistical sensitivity for detecting evoked activity in parietal regions. In contrast, the canonical HRF associated with spatially adaptive regularization is more sensitive in other regions, such as motor cortex. This different regional behavior is shown to reflect a larger discrepancy of HRF with the canonical model. By varying parallel imaging acceleration factor, SNR-specific region-based hemodynamic parameters (activation delay and duration) were extracted from the JDE inference. Complementary analyses highlighted their significant departure from the canonical parameters and the strongest between-subject variability that occurs in the parietal region, irrespective of the SNR value. Finally, statistical evidence that the fluctuation of the HRF shape is responsible for the significant change in activation detection performance is demonstrated using paired t-tests between hemodynamic parameters inferred by GLM and JDE.

摘要

跨被试 fMRI 分析在检测脑激活模式和估计潜在动力学方面的结果可靠性方面存在特定问题。这些问题之一是血流动力学响应函数 (HRF) 的可变性,通常在广义线性模型 (GLM) 中使用功能基集来解释。在这里,我们使用联合检测-估计方法 (JDE) (Makni 等人,2008 年;Vincent 等人,2010 年),该方法将区域非参数 HRF 推断与激活簇的空间自适应正则化相结合,以避免 fMRI 图像的全局平滑。我们表明,基于 JDE 的推断可显著提高检测顶叶区域诱发活动的统计灵敏度。相比之下,与空间自适应正则化相关的典型 HRF 在其他区域(如运动皮层)更敏感。这种不同的区域行为表明 HRF 与典型模型的差异更大。通过改变并行成像加速因子,可以从 JDE 推断中提取出与 SNR 特定区域相关的血液动力学参数(激活延迟和持续时间)。补充分析强调了它们与典型参数的显著偏离以及在顶叶区域发生的最强的个体间变异性,与 SNR 值无关。最后,使用 GLM 和 JDE 推断的血液动力学参数之间的配对 t 检验,证明了 HRF 形状的波动是导致激活检测性能显著变化的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验