Kalus Stefanie, Bothmann Ludwig, Yassouridis Christina, Czisch Michael, Sämann Philipp G, Fahrmeir Ludwig
Department of Statistics, Ludwig-Maximilians-University, Ludwigstr. 33, 80539, Munich, Germany.
Hum Brain Mapp. 2015 Feb;36(2):731-43. doi: 10.1002/hbm.22660. Epub 2014 Oct 23.
Functional magnetic resonance imaging (fMRI) activation detection within stimulus-based experimental paradigms is conventionally based on the assumption that activation effects remain constant over time. This assumption neglects the fact that the strength of activation may vary, for example, due to habituation processes or changing attention. Neither the functional form of time variation can be retrieved nor short-lasting effects can be detected by conventional methods. In this work, a new dynamic approach is proposed that allows to estimate time-varying effect profiles and hemodynamic response functions in event-related fMRI paradigms. To this end, we incorporate the time-varying coefficient methodology into the fMRI general regression framework. Inference is based on a voxelwise penalized least squares procedure. We assess the strength of activation and corresponding time variation on the basis of pointwise confidence intervals on a voxel level. Additionally, spatial clusters of effect curves are presented. Results of the analysis of an active oddball experiment show that activation effects deviating from a constant trend coexist with time-varying effects that exhibit different types of shapes, such as linear, (inversely) U-shaped or fluctuating forms. In a comparison to conventional approaches, like classical SPM, we observe that time-constant methods are rather insensitive to detect temporary effects, because these do not emerge when aggregated across the entire experiment. Hence, it is recommended to base activation detection analyses not merely on time-constant procedures but to include flexible time-varying effects that harbour valuable information on individual response patterns.
在基于刺激的实验范式中,功能磁共振成像(fMRI)激活检测传统上基于激活效应随时间保持恒定的假设。这一假设忽略了激活强度可能变化的事实,例如,由于习惯化过程或注意力的改变。传统方法既无法获取时间变化的函数形式,也无法检测到短暂的效应。在这项工作中,我们提出了一种新的动态方法,该方法能够在事件相关的fMRI范式中估计随时间变化的效应曲线和血流动力学响应函数。为此,我们将时变系数方法纳入fMRI一般回归框架。推理基于体素级惩罚最小二乘法。我们基于体素水平的逐点置信区间评估激活强度和相应的时间变化。此外,还展示了效应曲线的空间聚类。一个主动式oddball实验的分析结果表明,偏离恒定趋势的激活效应与时变效应共存,时变效应呈现出不同类型的形状,如线性、(反)U形或波动形式。与传统方法(如经典的统计参数映射(SPM))相比,我们观察到时间恒定的方法对检测临时效应相当不敏感,因为这些效应在整个实验中汇总时不会出现。因此,建议激活检测分析不仅要基于时间恒定的程序,还要包括灵活的时变效应,这些效应包含有关个体反应模式的有价值信息。