Suppr超能文献

RNA聚合酶II延伸的单分子研究。

Single-molecule studies of RNAPII elongation.

作者信息

Zhou Jing, Schweikhard Volker, Block Steven M

机构信息

Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

出版信息

Biochim Biophys Acta. 2013 Jan;1829(1):29-38. doi: 10.1016/j.bbagrm.2012.08.006. Epub 2012 Sep 6.

Abstract

Elongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy. Recently, single-molecule approaches have emerged as powerful tools for the study of transcription in eukaryotic organisms. Here, we review recent progress and discuss some of the unresolved questions and ongoing debates, while anticipating future developments in the field. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

摘要

延伸是指RNA聚合酶(RNAP)沿着DNA模板持续移动的转录阶段,它通过一种基本的酶促机制发生,这种机制被认为在生命所有王国的多亚基聚合酶中普遍保守。除了这种基本机制外,转录延伸还整合了许多过程,其中包括保真度控制、涉及延伸因子的基因调控相互作用、RNA剪接或加工因子以及与染色质结构相关的调控机制。然而,核苷酸添加循环机制及其调控的许多动力学和分子细节仍然难以捉摸,引发了持续的关注甚至争议。最近,单分子方法已成为研究真核生物转录的强大工具。在这里,我们回顾了最近的进展,讨论了一些未解决的问题和正在进行的辩论,同时展望了该领域的未来发展。本文是名为:RNA聚合酶II转录延伸的特刊的一部分。

相似文献

1
Single-molecule studies of RNAPII elongation.
Biochim Biophys Acta. 2013 Jan;1829(1):29-38. doi: 10.1016/j.bbagrm.2012.08.006. Epub 2012 Sep 6.
2
Transcriptional elongation and alternative splicing.
Biochim Biophys Acta. 2013 Jan;1829(1):134-40. doi: 10.1016/j.bbagrm.2012.08.005. Epub 2012 Sep 7.
3
Structural basis of transcription elongation.
Biochim Biophys Acta. 2013 Jan;1829(1):9-19. doi: 10.1016/j.bbagrm.2012.09.002. Epub 2012 Sep 13.
4
Ubiquitylation and degradation of elongating RNA polymerase II: the last resort.
Biochim Biophys Acta. 2013 Jan;1829(1):151-7. doi: 10.1016/j.bbagrm.2012.08.002. Epub 2012 Aug 31.
5
The Mediator complex and transcription elongation.
Biochim Biophys Acta. 2013 Jan;1829(1):69-75. doi: 10.1016/j.bbagrm.2012.08.017. Epub 2012 Sep 13.
6
The control of elongation by the yeast Ccr4-not complex.
Biochim Biophys Acta. 2013 Jan;1829(1):127-33. doi: 10.1016/j.bbagrm.2012.09.001. Epub 2012 Sep 10.
7
Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14840-5. doi: 10.1073/pnas.1506760112. Epub 2015 Nov 17.
8
Biochemical methods to characterize RNA polymerase II elongation complexes.
Methods. 2019 Apr 15;159-160:70-81. doi: 10.1016/j.ymeth.2019.01.011. Epub 2019 Jan 24.
9
Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
Biochim Biophys Acta. 2013 Jan;1829(1):55-62. doi: 10.1016/j.bbagrm.2012.08.013. Epub 2012 Sep 7.
10
RNA polymerase II transcript elongation.
Biochim Biophys Acta. 2013 Jan;1829(1):1. doi: 10.1016/j.bbagrm.2012.12.008.

引用本文的文献

1
Multiplexed single-molecule characterization at the library scale.
Nat Protoc. 2025 Jun 4. doi: 10.1038/s41596-025-01198-w.
3
An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription.
PLoS One. 2022 Oct 25;17(10):e0273746. doi: 10.1371/journal.pone.0273746. eCollection 2022.
4
Spatiotemporally controlled generation of NTPs for single-molecule studies.
Nat Chem Biol. 2022 Oct;18(10):1144-1151. doi: 10.1038/s41589-022-01100-9. Epub 2022 Sep 21.
5
Single-molecule FRET method to investigate the dynamics of transcription elongation through the nucleosome by RNA polymerase II.
Methods. 2019 Apr 15;159-160:51-58. doi: 10.1016/j.ymeth.2019.01.009. Epub 2019 Jan 17.
6
Force-activated DNA substrates for probing individual proteins interacting with single-stranded DNA.
Nucleic Acids Res. 2017 Oct 13;45(18):10775-10782. doi: 10.1093/nar/gkx761.
7
Observing Single RNA Polymerase Molecules Down to Base-Pair Resolution.
Methods Mol Biol. 2017;1486:391-409. doi: 10.1007/978-1-4939-6421-5_15.
8
Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments.
Nucleic Acids Res. 2014 Oct;42(18):e137. doi: 10.1093/nar/gku677. Epub 2014 Aug 19.
9
Transcription regulation during stable elongation by a reversible halt of RNA polymerase II.
Mol Biol Cell. 2014 Jul 15;25(14):2190-8. doi: 10.1091/mbc.E14-02-0755. Epub 2014 May 21.
10
Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6642-7. doi: 10.1073/pnas.1405181111. Epub 2014 Apr 14.

本文引用的文献

2
Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6555-60. doi: 10.1073/pnas.1200939109. Epub 2012 Apr 9.
4
RNA polymerase II elongation control.
Annu Rev Biochem. 2012;81:119-43. doi: 10.1146/annurev-biochem-052610-095910. Epub 2012 Mar 9.
5
Genome-wide structure and organization of eukaryotic pre-initiation complexes.
Nature. 2012 Jan 18;483(7389):295-301. doi: 10.1038/nature10799.
6
Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution.
Cell. 2011 Dec 9;147(6):1408-19. doi: 10.1016/j.cell.2011.11.013.
8
The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes.
Nat Struct Mol Biol. 2011 Nov 13;18(12):1394-9. doi: 10.1038/nsmb.2164.
9
CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing.
Nature. 2011 Nov 3;479(7371):74-9. doi: 10.1038/nature10442.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验