Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
Nat Genet. 2012 Oct;44(10):1166-70. doi: 10.1038/ng.2410. Epub 2012 Sep 16.
The variance component tests used in genome-wide association studies (GWAS) including large sample sizes become computationally exhaustive when the number of genetic markers is over a few hundred thousand. We present an extremely fast variance components-based two-step method, GRAMMAR-Gamma, developed as an analytical approximation within a framework of the score test approach. Using simulated and real human GWAS data sets, we show that this method provides unbiased estimates of the SNP effect and has a power close to that of the likelihood ratio test-based method. The computational complexity of our method is close to its theoretical minimum, that is, to the complexity of the analysis that ignores genetic structure. The running time of our method linearly depends on sample size, whereas this dependency is quadratic for other existing methods. Simulations suggest that GRAMMAR-Gamma may be used for association testing in whole-genome resequencing studies of large human cohorts.
全基因组关联研究(GWAS)中使用的方差分量检验,当遗传标记数量超过几十万时,计算上会变得非常繁琐。我们提出了一种极其快速的基于方差分量的两步法,GRAMMAR-Gamma,它是在评分检验方法框架内作为分析逼近开发的。使用模拟和真实的人类 GWAS 数据集,我们表明该方法提供了 SNP 效应的无偏估计,并且其功效接近于似然比检验方法的功效。我们的方法的计算复杂度接近其理论最小值,即忽略遗传结构的分析的复杂度。我们的方法的运行时间与样本量呈线性关系,而对于其他现有方法,这种依赖性是二次的。模拟表明,GRAMMAR-Gamma 可用于对大型人类队列的全基因组重测序研究进行关联检验。