Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
Planta. 2012 Dec;236(6):1701-12. doi: 10.1007/s00425-012-1729-4. Epub 2012 Aug 5.
Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.
镉(Cd)解毒涉及谷胱甘肽和植物螯合肽的生物合成:对氮的更高需求应该需要增加硝酸盐(NO3(-))的摄取和代谢。我们研究了在短时间暴露(10 分钟至 24 小时)于低镉浓度(0、1 或 10 μM)下,玉米幼苗根中质膜(PM)上诱导的高亲和力 NO3(-)摄取:分析了高亲和力 NO3(-)转运体、NO3(-)还原酶和 PM H+ -ATPase 的活性和基因转录丰度。暴露于 1 mM NO3(-)导致 0.2 mM 高亲和力(0.2 mM)NO3(-)摄取率(诱导)达到峰值,而在 Cd 处理的根中则明显降低。质膜 H+ -ATPase 活性也受到强烈限制,而 Cd 处理根提取物中的内部 NO3(-)积累和 NO3(-)还原酶活性仅略有降低。高亲和力和低亲和力 NO3(-)摄取的动力学表明,Cd 迅速(10 分钟)阻断了诱导的高亲和力运输系统;组成性高亲和力运输系统似乎不易受到 Cd 的影响,低亲和力运输系统似乎受影响较小,仅在长时间暴露(12 小时)后才受到影响。Cd 处理还改变了编码高亲和力 NO3(-)转运体(ZmNTR2.1、ZmNRT2.2)、PM H+ -ATPases(ZmMHA3、ZmMHA4)和 NO3(-)还原酶(ZmNR1、ZmNADH:NR)的基因的转录水平。尽管对 NO3(-)的需求预计会增加,但 Cd 对 NO3(-)营养的负面影响被报道。Cd 对外部溶液中 NO3(-)摄取的生理和转录水平的影响会发生变化,特别是对诱导的高亲和力阴离子运输系统的影响更为严重。此外,Cd 会限制植物对 NO3(-)可用性变化的响应能力。