Mao Qian Qian, Guan Mei Yan, Lu Kai Xing, Du Shao Ting, Fan Shi Kai, Ye Yi-Quan, Lin Xian Yong, Jin Chong Wei
College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China (Q.Q.M., M.Y.G., S.K.F., Y.-Q.Y., X.Y.L., C.W.J.);Laboratory of Plant Molecular Biology, College of Science and Technology, Ningbo University, Ningbo 315211, China (K.X.L.); andCollege of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310035, China (S.T.D.).
College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China (Q.Q.M., M.Y.G., S.K.F., Y.-Q.Y., X.Y.L., C.W.J.);Laboratory of Plant Molecular Biology, College of Science and Technology, Ningbo University, Ningbo 315211, China (K.X.L.); andCollege of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310035, China (S.T.D.)
Plant Physiol. 2014 Oct;166(2):934-44. doi: 10.1104/pp.114.243766. Epub 2014 Aug 8.
Identification of mechanisms that decrease cadmium accumulation in plants is a prerequisite for minimizing dietary uptake of cadmium from contaminated crops. Here, we show that cadmium inhibits nitrate transporter 1.1 (NRT1.1)-mediated nitrate (NO3 (-)) uptake in Arabidopsis (Arabidopsis thaliana) and impairs NO3 (-) homeostasis in roots. In NO3 (-)-containing medium, loss of NRT1.1 function in nrt1.1 mutants leads to decreased levels of cadmium and several other metals in both roots and shoots and results in better biomass production in the presence of cadmium, whereas in NO3 (-)-free medium, no difference is seen between nrt1.1 mutants and wild-type plants. These results suggest that inhibition of NRT1.1 activity reduces cadmium uptake, thus enhancing cadmium tolerance in an NO3 (-) uptake-dependent manner. Furthermore, using a treatment rotation system allowing synchronous uptake of NO3 (-) and nutrient cations and asynchronous uptake of cadmium, the nrt1.1 mutants had similar cadmium levels to wild-type plants but lower levels of nutrient metals, whereas the opposite effect was seen using treatment rotation allowing synchronous uptake of NO3 (-) and cadmium and asynchronous uptake of nutrient cations. We conclude that, although inhibition of NRT1.1-mediated NO3 (-) uptake by cadmium might have negative effects on nitrogen nutrition in plants, it has a positive effect on cadmium detoxification by reducing cadmium entry into roots. NRT1.1 may regulate the uptake of cadmium and other cations by a common mechanism.
确定降低植物中镉积累的机制是将受污染作物中镉的膳食摄入量降至最低的前提条件。在此,我们表明镉抑制拟南芥中硝酸盐转运蛋白1.1(NRT1.1)介导的硝酸盐(NO3 (-))吸收,并损害根部的NO3 (-) 稳态。在含有NO3 (-) 的培养基中,nrt1.1突变体中NRT1.1功能的丧失导致根和地上部中镉及其他几种金属的含量降低,并在镉存在的情况下导致更好的生物量产生,而在无NO3 (-) 的培养基中,nrt1.1突变体与野生型植物之间没有差异。这些结果表明,抑制NRT1.1活性可减少镉的吸收,从而以依赖于NO3 (-) 吸收的方式增强镉耐受性。此外,使用允许NO3 (-) 和营养阳离子同步吸收以及镉异步吸收的处理轮换系统,nrt1.1突变体的镉含量与野生型植物相似,但营养金属含量较低,而使用允许NO3 (-) 和镉同步吸收以及营养阳离子异步吸收的处理轮换系统则观察到相反的效果。我们得出结论,尽管镉对NRT1.1介导的NO3 (-) 吸收的抑制可能会对植物的氮营养产生负面影响,但它通过减少镉进入根部对镉解毒具有积极作用。NRT1.1可能通过一种共同机制调节镉和其他阳离子的吸收。