Department of Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
Curr Diab Rep. 2012 Dec;12(6):697-704. doi: 10.1007/s11892-012-0318-z.
Structure-based protein design has enabled the engineering of insulin analogs with improved pharmacokinetic and pharmacodynamic properties. Exploiting classical structures of zinc insulin hexamers, the first insulin analog products focused on destabilization of subunit interfaces to obtain rapid-acting (prandial) formulations. Complementary efforts sought to stabilize the insulin hexamer or promote higher-order self-assembly within the subcutaneous depot toward the goal of enhanced basal glycemic control with reduced risk of hypoglycemia. Current products either operate through isoelectric precipitation (insulin glargine, the active component of Lantus; Sanofi-Aventis, Paris, France) or employ an albumin-binding acyl tether (insulin detemir, the active component of Levemir; Novo-Nordisk, Basværd, Denmark). In the past year second-generation basal insulin analogs have entered clinical trials in an effort to obtain ideal flat 24-hour pharmacodynamic profiles. The strategies employ non-standard protein modifications. One candidate (insulin degludec; Novo-Nordisk a/s) undergoes extensive subcutaneous supramolecular assembly coupled to a large-scale allosteric reorganization of the insulin hexamer (the TR transition). Another candidate (LY2605541; Eli Lilly and Co., Indianapolis, IN, USA) utilizes coupling to polyethylene glycol to delay absorption and clearance. On the other end of the spectrum, advances in delivery technologies (such as microneedles and micropatches) and excipients (such as the citrate/zinc-ion chelator combination employed by Biodel, Inc., Danbury, CT, USA) suggest strategies to accelerate PK/PD toward ultra-rapid-acting insulin formulations. Next-generation insulin analogs may also address the feasibility of hepatoselective signaling. Although not in clinical trials, early-stage technologies provide a long-range vision of "smart insulins" and glucose-responsive polymers for regulated hormone release.
基于结构的蛋白质设计使胰岛素类似物的工程得以实现,这些类似物具有改善的药代动力学和药效学特性。利用锌胰岛素六聚体的经典结构,第一批胰岛素类似物产品专注于破坏亚基界面的稳定性,以获得快速作用(餐时)制剂。同时,还进行了互补的努力,以稳定胰岛素六聚体或促进皮下储存库中的更高阶自组装,以实现增强基础血糖控制和降低低血糖风险的目标。目前的产品要么通过等电沉淀(甘精胰岛素,Lantus 的活性成分;赛诺菲-安万特,巴黎,法国)起作用,要么使用白蛋白结合酰基侧链(地特胰岛素,Levemir 的活性成分;诺和诺德,巴伐斯韦尔,丹麦)。在过去的一年中,第二代基础胰岛素类似物已进入临床试验,以获得理想的 24 小时药效学平坦曲线。这些策略采用了非标准的蛋白质修饰。一种候选药物(德谷胰岛素;诺和诺德公司)经历了广泛的皮下超分子组装,同时伴随着胰岛素六聚体的大规模变构重组(TR 转变)。另一种候选药物(LY2605541;礼来公司,印第安纳波利斯,IN,美国)利用与聚乙二醇的耦合来延迟吸收和清除。在另一端,输送技术(如微针和微贴剂)和赋形剂(如 Biodel,Inc.,丹伯里,CT,美国使用的柠檬酸盐/锌离子螯合剂组合)的进步表明了策略,以加速 PK/PD 向超快速作用胰岛素制剂发展。下一代胰岛素类似物也可能解决肝选择性信号传递的可行性。虽然尚未进入临床试验,但早期技术为“智能胰岛素”和葡萄糖响应聚合物提供了一种用于调节激素释放的远程愿景。