Berenson Daniel F, Weiss Allison R, Wan Zhu-Li, Weiss Michael A
Department of Molecular Biophysics and Biochemistry Yale University. New Haven, CT.
Ann N Y Acad Sci. 2011 Dec;1243:E40-E54. doi: 10.1111/j.1749-6632.2012.06468.x. Epub 2012 Mar 13.
The engineering of insulin analogs represents a triumph of structure-based protein design. A framework has been provided by structures of insulin hexamers. Containing a zinc-coordinated trimer of dimers, such structures represent a storage form of the active insulin monomer. Initial studies focused on destabilization of subunit interfaces. Because disassembly facilitates capillary absorption, such targeted destabilization enabled development of rapid-acting insulin analogs. Converse efforts were undertaken to stabilize the insulin hexamer and promote higher-order self-assembly within the subcutaneous depot toward the goal of enhanced basal glycemic control with reduced risk of hypoglycemia. Current products either operate through isoelectric precipitation (insulin glargine, the active component of Lantus(®); Sanofi-Aventis) or employ an albumin-binding acyl tether (insulin detemir, the active component of Levemir(®); Novo-Nordisk). To further improve pharmacokinetic properties, modified approaches are presently under investigation. Novel strategies have recently been proposed based on subcutaneous supramolecular assembly coupled to (a) large-scale allosteric reorganization of the insulin hexamer (the TR transition), (b) pH-dependent binding of zinc ions to engineered His-X(3)-His sites at hexamer surfaces, or (c) the long-range vision of glucose-responsive polymers for regulated hormone release. Such designs share with wild-type insulin and current insulin products a susceptibility to degradation above room temperature, and so their delivery, storage, and use require the infrastructure of an affluent society. Given the global dimensions of the therapeutic supply chain, we envisage that concurrent engineering of ultra-stable protein analog formulations would benefit underprivileged patients in the developing world.
胰岛素类似物的工程设计代表了基于结构的蛋白质设计的一项成就。胰岛素六聚体的结构提供了一个框架。这种结构包含一个由锌离子配位的二聚体三聚体,代表了活性胰岛素单体的一种储存形式。最初的研究集中在亚基界面的不稳定化。由于解聚有助于毛细血管吸收,这种有针对性的不稳定化使得速效胰岛素类似物得以开发。相反,人们致力于稳定胰岛素六聚体,并促进皮下注射部位内的高阶自组装,以实现增强基础血糖控制并降低低血糖风险的目标。目前的产品要么通过等电沉淀发挥作用(甘精胰岛素,来得时(Lantus(®))的活性成分;赛诺菲 - 安万特公司),要么采用白蛋白结合酰基连接链(地特胰岛素,诺和平(Levemir(®))的活性成分;诺和诺德公司)。为了进一步改善药代动力学性质,目前正在研究改进的方法。最近基于皮下超分子组装提出了新的策略,这些策略涉及(a)胰岛素六聚体的大规模变构重组(TR转变),(b)锌离子在六聚体表面与工程化的His - X(3) - His位点的pH依赖性结合,或者(c)用于调节激素释放的葡萄糖响应聚合物的长远设想。这些设计与野生型胰岛素和当前的胰岛素产品一样,在室温以上易降解,因此它们的递送、储存和使用需要富裕社会提供的基础设施。鉴于治疗供应链的全球规模,我们设想超稳定蛋白质类似物制剂的同步工程设计将使发展中世界的贫困患者受益。