Nano-Optics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
Nano Lett. 2012 Nov 14;12(11):5504-9. doi: 10.1021/nl302315g. Epub 2012 Oct 4.
In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices.
在物质存在的情况下,不存在根本限制,可以将可见光限制在原子尺度以下。实现这种限制和相应的共振强度增强,不可避免地需要同时控制材料结构的原子尺度细节和这些结构所支持的光学模式。通过自组装,我们获得了并排排列的金纳米棒二聚体,其具有稳定的原子定义间隙,达到 0.5nm 以下。通过在白光散射实验中观察到相应的对称和反对称二聚体本征模式的极端库仑分裂超过 800meV,证明了这些间隙中存在原子限制的光场。我们的结果为原子分辨光谱成像、深非线性光学、超灵敏、腔光机械以及新型量子光学器件的实现开辟了新的视角。