Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
J Med Chem. 2012 Nov 26;55(22):9416-33. doi: 10.1021/jm301020q. Epub 2012 Oct 15.
There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinson's disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of highly ligand efficient aminopyrimidine lead compounds. High throughput in vivo rodent cassette pharmacokinetic studies enabled rapid validation of in vitro-in vivo correlations. Guided by this data, optimal design parameters were established. Effective incorporation of these guidelines into our molecular design process resulted in the discovery of small molecule inhibitors such as GNE-7915 (18) and 19, which possess an ideal balance of LRRK2 cellular potency, broad kinase selectivity, metabolic stability, and brain penetration across multiple species. Advancement of GNE-7915 into rodent and higher species toxicity studies enabled risk assessment for early development.
对于能够高效、选择性地穿透血脑屏障的富亮氨酸重复激酶 2(LRRK2)小分子抑制剂有很高的需求,这些抑制剂可以用来测试抑制 LRRK2 激酶活性是否是治疗帕金森病患者的一种可行选择。本文介绍了使用基于性质和结构的药物设计来优化高效配体的氨基嘧啶先导化合物。高通量的体内啮齿动物盒式药代动力学研究能够快速验证体外-体内相关性。根据这些数据,确定了最佳的设计参数。将这些指导原则有效地纳入我们的分子设计过程中,发现了小分子抑制剂,如 GNE-7915(18)和 19,它们在 LRRK2 细胞效力、广泛的激酶选择性、代谢稳定性和在多种物种中的脑穿透性方面具有理想的平衡。将 GNE-7915 推进到啮齿动物和更高物种的毒性研究中,使早期开发的风险评估成为可能。